在得到数据后,经常需要对数据进行提取、分析和使用,提取数据过程中难免要对数据进行各种切片操作,根据具体的业务需求筛选出所需的数据,pandas提供了一些方法方便我们选取数据,下面主要讲解dataFrame类型的数据选取,Series类型用法类似,可以参考官方文档进行更细致的探究
pandas主要提供了三种属性用来选取行/列数据
属性名 | 属性 |
---|---|
ix | 根据整数索引或者行标签选取数据 |
loc | 根据行标签选取数据 |
iloc | 根据位置的整数索引选取数据 |
这三种属性,既可以让我们获取整行/整列的数据,也可以让我们选取符合标准的行/列数据,但ix这种混用的方式官方已经不再推荐使用,下文的小案例中也不对此例做过多的讲述
具体案例
导入pandas并创建一个4行5列的DataFrame
import pandas as pd
import numpy as np
data = pd.DataFrame(np.arange(20).reshape((4,5)),index=list("ABCD"),columns=list("vwxyz"))
print(data)
<