pandas切片操作

15 篇文章 ¥9.90 ¥99.00
这篇博客介绍了pandas如何进行数据切片操作,包括选取行、列,以及基于条件筛选数据。通过实例展示了获取单行、多行、特定列、多列数据的方法,并涉及数据赋值、统计计算和绘图等应用。最后强调了pandas切片功能在提升工作效率中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在得到数据后,经常需要对数据进行提取、分析和使用,提取数据过程中难免要对数据进行各种切片操作,根据具体的业务需求筛选出所需的数据,pandas提供了一些方法方便我们选取数据,下面主要讲解dataFrame类型的数据选取,Series类型用法类似,可以参考官方文档进行更细致的探究

pandas主要提供了三种属性用来选取行/列数据

属性名 属性
ix 根据整数索引或者行标签选取数据
loc 根据行标签选取数据
iloc 根据位置的整数索引选取数据

这三种属性,既可以让我们获取整行/整列的数据,也可以让我们选取符合标准的行/列数据,但ix这种混用的方式官方已经不再推荐使用,下文的小案例中也不对此例做过多的讲述

具体案例

导入pandas并创建一个4行5列的DataFrame

import pandas as pd
import numpy as np

data = pd.DataFrame(np.arange(20).reshape((4,5)),index=list("ABCD"),columns=list("vwxyz"))
print(data)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值