Python实践:基于Matplotlib实现某产品全年销量数据可视化

学习心得

  • 有时候我们需要对某些数据进行分析,得到一些可视化效果图,而这些效果图可以直观展示给我们数据的变化趋势;

  • 比如某产品的月销量数据、销售额的地区分布、销售增长和季节的变化情况、产品的贡献度分析等等;

  • 本文主要针对某产品全年销量数据,绘制各种不同样式的图表,以不同样式展示数据;

  • 学习本文建议对Python的matplotlib第三库有一定的了解。

Matplotlib说明

什么是Matplotlib?

  • Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形;

  • Matplotlib可生成绘图、直方图、功率谱、条形图、错误图、散点图、折线图等;

  • Matplotlib是Python生态系统的一个重要组成部分,是用于可视化的绘图库;

  • Matplotlib提供了一整套和matlab相似的命令API和可视化界面,可以生成出版质量级别的精美图形。

Matplotlib特性

  • Matplotlib图表中的元素包含以下内容:

A、X轴和Y轴;B、X轴和Y轴刻度;C、X轴和Y轴标签;D、绘图区域。

  • 关于hold属性:

A、hold属性默认为True,可在一幅图中绘制多个曲线;B、将hold属性修改为False,每一个plot都会覆盖前面的plot(这种方法不推荐,建议使用默认的)。

  • 常用方法:

A、可使用grid方法为图添加网格线;B、还可以使用其他方法,如axis方法、xlim方法、ylim方法、legend方法;

  • 关于配置方面:

matplotlib配置信息是从配置文件读取的。在配置文件中可以为matplotlib的几乎所有属性指定永久有效的默认;主要为永久配置和动态配置。

Matplotlib安装

直接使用pip安装即可:

pip install matplotlib

产品订单量-折线图

某产品全年订单量数据

  • 以下是某产品全年的销量数据:

  • 全年12个月数据中,每个月对应有产品的订单量和退货量。

数据提取和分析

  • 我们可以把月份用以下变量表示:

复制代码

month = ["Jan", "Feb", "Mar", "Apr", 
         "May", "Jun", "Jul", "Aug", 
         "Sep", "Oct", "Nov", "Dec"]
         
print(f"月份为:{month}")
# 输出:月份为:['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

复制代码

复制运行

  • 产品对应的销量分两种,一种是订单量,一种是退货量,可用两个变量来存放数据:

  • </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值