【目标检测实战】基于深度学习的路面坑洞检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

基本功能演示

图片

在这里插入图片描述

摘要:路面坑洞检测在道路维护、交通安全以及自动驾驶等领域具有重要的意义。它不仅可以提前预警潜在危险,而且是自动驾驶技术的必备技术。本文基于YOLOv8深度学习框架,通过685张图片,训练了一个进行路面坑洞的目标检测模型,准确率达82%。并基于此模型开发了一款带UI界面的道路坑洞检测系统,可用于实时检测场景中的路面坑洞检测,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果

前言

路面坑洞检测在道路维护、交通安全以及自动驾驶等领域具有重要的意义。首先,及时准确的识别和评估路面损坏(如裂缝、变形和松散等),不仅可以提前预警潜在的危险,避免由于道路状况不佳导致的交通事故,还能为道路维修保养提供依据,提高道路使用寿命和驾驶舒适度。其次,随着自动驾驶技术的发展,路面坑洞检测已经成为了L3/L4级别自动驾驶汽车的先

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值