基本功能演示
在这里插入图片描述
摘要:
路面坑洞检测
在道路维护、交通安全以及自动驾驶等领域具有重要的意义。它不仅可以提前预警潜在危险,而且是自动驾驶技术的必备技术。本文基于YOLOv8深度学习框架
,通过685张图片
,训练了一个进行路面坑洞
的目标检测模型,准确率达82%
。并基于此模型开发了一款带UI界面的道路坑洞检测系统
,可用于实时检测场景中的路面坑洞检测,更方便进行功能的展示。该系统是基于python
与PyQT5
开发的,支持图片
、视频
以及摄像头
进行目标检测
,并保存检测结果
。
前言
路面坑洞检测
在道路维护、交通安全以及自动驾驶等领域具有重要的意义。首先,及时准确的识别和评估路面损坏(如裂缝、变形和松散等),不仅可以提前预警潜在的危险,避免由于道路状况不佳导致的交通事故,还能为道路维修保养提供依据,提高道路使用寿命和驾驶舒适度。其次,随着自动驾驶技术的发展,路面坑洞检测已经成为了L3/L4级别自动驾驶汽车的先