一种路网划分的策略

文章探讨了在处理全国路网数据时遇到的内存高占用和启动慢的问题。通过将路网数据分片,可以显著减少数据量。作者提出将link所属分片转化为点所属分片的问题,并介绍了如何通过网格化算法判断点在不规则多边形内的方法。此策略旨在最小化边界的link切割,保持数据的连续性。最终,通过离散化节点并建立映射关系,实现了路网的有效划分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面临的问题

我们目前的服务是加载全国路网数据。这种加载方式的优势是能确保数据的唯一性和连续性,但是因为数据量过大,服务对内存的使用率很高,启动缓慢。那么,如果能将路网进行分片的话,数据量就能得以极大的降低。一条link包含起点(start_node)和终点(end_node),非极端情况下,这条link所属的分片可以等价于起点所属分片与终点所属分片的并集(最多属于两个分片),这样就将link所属分片的问题转化为点所属分片的问题。

在上图中,link1/2/4均满足之前的假设,只有link3是横跨的3个分片。在实际路网中,这种情况比较少见。

理论上我们可以通过将地图划分成一个一个的规则图形,判断一个点是否在规则图形内是很容易的,但真实情况并非如此简单。一是边界本身就是非规则线段,二是划分路网会造成link的不连续,为了把影响降到最低,希望划分的边界切割link数目最少。因此需要判断点是否在不规则图形中。

判断一个点是否在多边形中有很多方式,本文介绍的网格化方式是其中一个非常易懂的算法。

连续到离散

二维空间中分布的点是连续的,我们首先将它离散化。如图所示,在方格内的所有空间点均可以离散到(x1,y1),我们称之为represent_node。任何一个分片均可以由若干个方格组成。

 

上图中所有阴影部分的小方格组合成一个分片。

Slice[M] = {represent_node1, represent_node2, represent_node3…represent_nodeN}。

反过来我们可以创建一个映射关系

represent_node[N]  --> slice[M]

路网划分

路网是由一组link组成的。遍历每一条link,将start_node和end_node离散化成represent_node1和represent_node2,并利用上述的映射关系,找出对应的分片数,其值就是link对应的分片值。当遍历完成后,路网就划分好了。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值