
AI
leo_fighting
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人脸识别之PCA 和 LDA
一.PCA 1.理论基础(1) 在信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。因此 我们认为,最好的k维特征是将n维样本点转换为k维后,每一维上的样本方差都很大。 结论:对协方差矩阵进行特征值分解,得到的前k大特征值对应的特征向量就是最佳的k维新特征,而且这k维新 特征是正交的原创 2017-10-23 10:04:19 · 3744 阅读 · 0 评论 -
k-means聚类算法
http://www.csdn.net/article/2012-07-03/2807073-k-means转载 2017-11-06 21:12:14 · 196 阅读 · 0 评论 -
《为什么交叉熵(cross-entropy)可以用于计算代价? - 知乎》
https://www.zhihu.com/question/65288314转载 2019-01-19 22:12:35 · 961 阅读 · 0 评论 -
Batch Normalization
转载 2019-09-29 10:59:37 · 107 阅读 · 0 评论 -
BN LN IN GN 使用 Numpy 简单实现
Table of Contents BN LN IN GN INFERENCE BN feature map:包含 N 个样本,每个样本通道数为 C,高为 H,宽为 W。对其求均值和方差时,将在 N、H、W上操作,而保留通道 C 的维度。具体来说,就是把第1个样本的第1个通道,加上第2个样本第1个通道 ...... 加上第 N 个样本第1个通道,求平均,得到通道 1 的均值(注意是...原创 2019-07-25 20:30:27 · 1942 阅读 · 0 评论