一、引言
莫比乌斯反演(Möbius Inversion)是数论中一个非常重要的工具,广泛应用于组合数学、数论函数、容斥原理、算法竞赛等领域。它能够将某些复杂的求和问题转化为更易处理的形式。
在算法竞赛中,莫比乌斯反演常用于解决涉及最大公约数(GCD)、最小公倍数(LCM)、整除关系的计数问题。
二、前置知识
1. 数论函数(Arithmetic Function)
定义在正整数集上的函数称为数论函数。常见的有:
- 恒等函数:I(n)=1I(n) = 1I(n)=1
- 单位函数:ϵ(n)=[n=1]\epsilon(n) = [n=1]ϵ(n)=[n=1](当 n=1n=1n=1 时为1,否则为0)
- 恒等函数:id(n)=nid(n) = nid(n)=n
- 因子个数函数:d(n)=∑d∣n1d(n) = \sum_{d|n} 1d(n)=∑d∣n1
- 因子和函数:σ(n)=∑d∣nd\sigma(n) = \sum_{d|n} dσ(n)=∑d∣nd
- 欧拉函数:ϕ(n)\phi(n)ϕ(n):小于等于 nnn 且与 nnn 互质的正整数个数
2. 狄利克雷卷积(Dirichlet Convolution)
对于两个数论函数 fff 和 ggg,其狄利克雷卷积定义为:
(f∗g)(n)=∑d∣nf(d)g(nd)
(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)
(f∗g)(n)=d∣n∑f(d)g(dn)
狄利克雷卷积满足:
- 交换律:f∗g=g∗ff * g = g * ff∗g=g∗f
- 结合律
- 单位元是 ϵ(n)\epsilon(n)ϵ(n),即 f∗ϵ=ff * \epsilon = ff∗ϵ=f
- 若 f(1)≠0f(1) \neq 0f(1)=0,则 fff 存在逆元 f−1f^{-1}f−1,使得 f∗f−1=ϵf * f^{-1} = \epsilonf∗f−1=ϵ
三、莫比乌斯函数(Möbius Function)
1. 定义
莫比乌斯函数 μ(n)\mu(n)μ(n) 是一个重要的数论函数,定义如下:
μ(n)={1,n=1(−1)k,n=p1p2⋯pk(k个不同质因子)0,其他情况(即 n 有平方因子) \mu(n) = \begin{cases} 1, & n = 1 \\ (-1)^k, & n = p_1 p_2 \cdots p_k \text{(}k\text{个不同质因子)} \\ 0, & \text{其他情况(即 }n\text{ 有平方因子)} \end{cases} μ(n)=⎩⎨⎧1,(−1)k,0,n=1n=p1p2⋯pk(k个不同质因子)其他情况(即 n 有平方因子)
换句话说:
- 如果 n=1n=1n=1,μ(n)=1\mu(n) = 1μ(n)=1
- 如果 nnn 是 kkk 个不同质数的乘积(无平方因子),μ(n)=(−1)k\mu(n) = (-1)^kμ(n)=(−1)k
- 如果 nnn 含有平方因子(如 4,8,9,124, 8, 9, 124,8,9,12 等),μ(n)=0\mu(n) = 0μ(n)=0
2. 性质
性质1:狄利克雷卷积性质
∑d∣nμ(d)=[n=1]=ϵ(n)
\sum_{d|n} \mu(d) = [n=1] = \epsilon(n)
d∣n∑μ(d)=[n=1]=ϵ(n)
即:μ∗I=ϵ\mu * I = \epsilonμ∗I=ϵ
证明:
- 当 n=1n=1n=1:∑d∣1μ(d)=μ(1)=1\sum_{d|1} \mu(d) = \mu(1) = 1∑d∣1μ(d)=μ(1)=1
- 当 n>1n > 1n>1,设 n=p1a1p2a2⋯pkakn = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}n=p1a1p2a2⋯pkak,只考虑无平方因子的 ddd(即 ddd 是 p1,…,pkp_1,\dots,p_kp1,…,pk 的子集乘积),则:
∑d∣nμ(d)=∑S⊆{1,…,k}(−1)∣S∣=∑i=0k(ki)(−1)i=(1−1)k=0 \sum_{d|n} \mu(d) = \sum_{S \subseteq \{1,\dots,k\}} (-1)^{|S|} = \sum_{i=0}^k \binom{k}{i} (-1)^i = (1-1)^k = 0 d∣n∑μ(d)=S⊆{1,…,k}∑(−1)∣S∣=i=0∑k(ik)(−1)i=(1−1)k=0
性质2:莫比乌斯函数是积性函数
若 a⊥ba \perp ba⊥b(互质),则 μ(ab)=μ(a)μ(b)\mu(ab) = \mu(a)\mu(b)μ(ab)=μ(a)μ(b)
四、莫比乌斯反演公式
1. 经典形式(标准形式)
设有两个数论函数 f(n)f(n)f(n) 和 F(n)F(n)F(n),满足:
F(n)=∑d∣nf(d)
F(n) = \sum_{d|n} f(d)
F(n)=d∣n∑f(d)
则有反演公式:
f(n)=∑d∣nμ(d)F(nd)
f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)
f(n)=d∣n∑μ(d)F(dn)
等价地,若 F=f∗IF = f * IF=f∗I,则 f=F∗μf = F * \muf=F∗μ
2. 另一种形式(倍数形式)
设有两个数论函数 f(n)f(n)f(n) 和 F(n)F(n)F(n),满足:
F(n)=∑n∣df(d)
F(n) = \sum_{n|d} f(d)
F(n)=n∣d∑f(d)
则有:
f(n)=∑n∣dμ(dn)F(d)
f(n) = \sum_{n|d} \mu\left(\frac{d}{n}\right) F(d)
f(n)=n∣d∑μ(nd)F(d)
这个形式在处理“倍数”问题时非常有用。
注:两种形式的本质是相同的,取决于你定义 FFF 的方式是“因子和”还是“倍数和”。
五、莫比乌斯反演的直观理解
莫比乌斯反演本质上是一种容斥原理的代数表达。
例如,考虑:
F(n)=∑d∣nf(d)
F(n) = \sum_{d|n} f(d)
F(n)=d∣n∑f(d)
你想从 FFF 恢复 f(n)f(n)f(n)。由于 F(n)F(n)F(n) 包含了所有 f(d)f(d)f(d)(d∣nd|nd∣n),你可以用容斥的思想逐步“减去”其他项。
而 μ(d)\mu(d)μ(d) 的值正好对应了容斥中的符号(正负交替)和是否参与(为0则跳过)。
六、经典应用举例
例1:欧拉函数的莫比乌斯表示
我们知道:
∑d∣nϕ(d)=n
\sum_{d|n} \phi(d) = n
d∣n∑ϕ(d)=n
即 id=ϕ∗Iid = \phi * Iid=ϕ∗I
由莫比乌斯反演得:
ϕ(n)=∑d∣nμ(d)⋅nd=n∑d∣nμ(d)d
\phi(n) = \sum_{d|n} \mu(d) \cdot \frac{n}{d} = n \sum_{d|n} \frac{\mu(d)}{d}
ϕ(n)=d∣n∑μ(d)⋅dn=nd∣n∑dμ(d)
这个公式可用于快速计算 ϕ(n)\phi(n)ϕ(n),尤其是在筛法中。
例2:求 ∑i=1n∑j=1m[gcd(i,j)=1]\sum_{i=1}^n \sum_{j=1}^m [\gcd(i,j) = 1]∑i=1n∑j=1m[gcd(i,j)=1]
即:有多少对 (i,j)(i,j)(i,j) 满足 gcd(i,j)=1\gcd(i,j) = 1gcd(i,j)=1
解法:
设 f(k)=∑i=1n∑j=1m[gcd(i,j)=k]f(k) = \sum_{i=1}^n \sum_{j=1}^m [\gcd(i,j) = k]f(k)=∑i=1n∑j=1m[gcd(i,j)=k]
我们要求 f(1)f(1)f(1)
令 F(k)=∑k∣df(d)=∑i=1n∑j=1m[k∣gcd(i,j)]=⌊nk⌋⌊mk⌋F(k) = \sum_{k|d} f(d) = \sum_{i=1}^n \sum_{j=1}^m [k | \gcd(i,j)] = \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloorF(k)=∑k∣df(d)=∑i=1n∑j=1m[k∣gcd(i,j)]=⌊kn⌋⌊km⌋
由莫比乌斯反演(倍数形式):
f(k)=∑k∣dμ(dk)F(d)=∑k∣dμ(dk)⌊nd⌋⌊md⌋
f(k) = \sum_{k|d} \mu\left(\frac{d}{k}\right) F(d) = \sum_{k|d} \mu\left(\frac{d}{k}\right) \left\lfloor \frac{n}{d} \right\rfloor \left\lfloor \frac{m}{d} \right\rfloor
f(k)=k∣d∑μ(kd)F(d)=k∣d∑μ(kd)⌊dn⌋⌊dm⌋
令 t=d/kt = d/kt=d/k,则 d=ktd = ktd=kt,得:
f(k)=∑t=1min(n/k,m/k)μ(t)⌊nkt⌋⌊mkt⌋
f(k) = \sum_{t=1}^{\min(n/k, m/k)} \mu(t) \left\lfloor \frac{n}{kt} \right\rfloor \left\lfloor \frac{m}{kt} \right\rfloor
f(k)=t=1∑min(n/k,m/k)μ(t)⌊ktn⌋⌊ktm⌋
当 k=1k=1k=1 时:
f(1)=∑t=1min(n,m)μ(t)⌊nt⌋⌊mt⌋
f(1) = \sum_{t=1}^{\min(n,m)} \mu(t) \left\lfloor \frac{n}{t} \right\rfloor \left\lfloor \frac{m}{t} \right\rfloor
f(1)=t=1∑min(n,m)μ(t)⌊tn⌋⌊tm⌋
这可以使用数论分块在 O(n)O(\sqrt{n})O(n) 时间内计算。
七、莫比乌斯函数的计算
1. 线性筛法求莫比乌斯函数
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const int MAXN = 1e6 + 5;
vector<int> primes;
bool is_prime[MAXN];
int mu[MAXN]; // 莫比乌斯函数
int phi[MAXN]; // 欧拉函数(顺便计算)
void linear_sieve() {
fill(is_prime, is_prime + MAXN, true);
is_prime[0] = is_prime[1] = false;
mu[1] = 1;
for (int i = 2; i < MAXN; i++) {
if (is_prime[i]) {
primes.push_back(i);
mu[i] = -1; // 单个质数
phi[i] = i - 1;
}
for (int p : primes) {
if (i * p >= MAXN) break;
is_prime[i * p] = false;
if (i % p == 0) {
// p^2 整除 i*p,所以 mu[i*p] = 0
mu[i * p] = 0;
phi[i * p] = phi[i] * p;
break;
} else {
// i 和 p 互质
mu[i * p] = -mu[i]; // mu[i] * mu[p] = mu[i] * (-1)
phi[i * p] = phi[i] * (p - 1);
}
}
}
}
2. 使用莫比乌斯函数求欧拉函数(验证)
// 验证 phi(n) = sum_{d|n} mu(d) * (n/d)
int compute_phi_by_mobius(int n) {
int res = 0;
for (int d = 1; d * d <= n; d++) {
if (n % d == 0) {
res += mu[d] * (n / d);
if (d * d != n) {
res += mu[n / d] * d;
}
}
}
return res;
}
3. 应用:求 [1,n] x [1,m] 中 gcd=1 的对数
long long count_coprime_pairs(int n, int m) {
long long res = 0;
int lim = min(n, m);
// 数论分块
for (int l = 1, r; l <= lim; l = r + 1) {
r = min(n / (n / l), m / (m / l));
long long sum_mu = 0;
for (int i = l; i <= r; i++) {
sum_mu += mu[i];
}
res += sum_mu * (n / l) * (m / l);
}
return res;
}
但上面的 sum_mu
是逐段求的,效率不高。我们可以预处理莫比乌斯前缀和:
int prefix_mu[MAXN]; // prefix_mu[i] = mu[1] + mu[2] + ... + mu[i]
void precompute_prefix_mu() {
prefix_mu[0] = 0;
for (int i = 1; i < MAXN; i++) {
prefix_mu[i] = prefix_mu[i-1] + mu[i];
}
}
long long count_coprime_pairs_fast(int n, int m) {
long long res = 0;
int lim = min(n, m);
for (int l = 1, r; l <= lim; l = r + 1) {
r = min(n / (n / l), m / (m / l));
res += (prefix_mu[r] - prefix_mu[l-1]) * (n / l) * (m / l);
}
return res;
}
八、进阶应用:∑i=1n∑j=1mgcd(i,j)\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)∑i=1n∑j=1mgcd(i,j)
这是经典问题。
设 ans=∑i=1n∑j=1mgcd(i,j)ans = \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)ans=∑i=1n∑j=1mgcd(i,j)
我们枚举 g=gcd(i,j)g = \gcd(i,j)g=gcd(i,j):
ans=∑g=1min(n,m)g⋅f(g)
ans = \sum_{g=1}^{\min(n,m)} g \cdot f(g)
ans=g=1∑min(n,m)g⋅f(g)
其中 f(g)f(g)f(g) 是满足 gcd(i,j)=g\gcd(i,j)=ggcd(i,j)=g 的对数。
由前面例子:
f(g)=∑t=1min(n/g,m/g)μ(t)⌊ngt⌋⌊mgt⌋
f(g) = \sum_{t=1}^{\min(n/g, m/g)} \mu(t) \left\lfloor \frac{n}{gt} \right\rfloor \left\lfloor \frac{m}{gt} \right\rfloor
f(g)=t=1∑min(n/g,m/g)μ(t)⌊gtn⌋⌊gtm⌋
代入得:
ans=∑g=1min(n,m)g∑t=1min(n/g,m/g)μ(t)⌊ngt⌋⌊mgt⌋
ans = \sum_{g=1}^{\min(n,m)} g \sum_{t=1}^{\min(n/g, m/g)} \mu(t) \left\lfloor \frac{n}{gt} \right\rfloor \left\lfloor \frac{m}{gt} \right\rfloor
ans=g=1∑min(n,m)gt=1∑min(n/g,m/g)μ(t)⌊gtn⌋⌊gtm⌋
令 k=gtk = gtk=gt,则:
ans=∑k=1min(n,m)⌊nk⌋⌊mk⌋∑g∣kg⋅μ(kg)
ans = \sum_{k=1}^{\min(n,m)} \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloor \sum_{g|k} g \cdot \mu\left(\frac{k}{g}\right)
ans=k=1∑min(n,m)⌊kn⌋⌊km⌋g∣k∑g⋅μ(gk)
注意到 ∑g∣kg⋅μ(k/g)=(id∗μ)(k)\sum_{g|k} g \cdot \mu(k/g) = (id * \mu)(k)∑g∣kg⋅μ(k/g)=(id∗μ)(k)
而我们知道:ϕ=id∗μ\phi = id * \muϕ=id∗μ,即 ϕ(k)=∑d∣kd⋅μ(k/d)\phi(k) = \sum_{d|k} d \cdot \mu(k/d)ϕ(k)=∑d∣kd⋅μ(k/d)
所以:
ans=∑k=1min(n,m)⌊nk⌋⌊mk⌋ϕ(k)
ans = \sum_{k=1}^{\min(n,m)} \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloor \phi(k)
ans=k=1∑min(n,m)⌊kn⌋⌊km⌋ϕ(k)
结论:
∑i=1n∑j=1mgcd(i,j)=∑k=1min(n,m)⌊nk⌋⌊mk⌋ϕ(k)
\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j) = \sum_{k=1}^{\min(n,m)} \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloor \phi(k)
i=1∑nj=1∑mgcd(i,j)=k=1∑min(n,m)⌊kn⌋⌊km⌋ϕ(k)
这比枚举 ggg 和 ttt 更高效!
C++ 实现:
long long sum_gcd_pairs(int n, int m) {
long long res = 0;
int lim = min(n, m);
for (int l = 1, r; l <= lim; l = r + 1) {
r = min(n / (n / l), m / (m / l));
long long sum_phi = 0;
for (int i = l; i <= r; i++) {
sum_phi += phi[i];
}
res += sum_phi * (n / l) * (m / l);
}
return res;
}
预处理 ϕ\phiϕ 前缀和可进一步优化。
九、完整C++代码示例
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int MAXN = 1e6 + 5;
vector<int> primes;
bool is_prime[MAXN];
int mu[MAXN], phi[MAXN];
long long prefix_mu[MAXN], prefix_phi[MAXN];
void linear_sieve() {
fill(is_prime, is_prime + MAXN, true);
is_prime[0] = is_prime[1] = false;
mu[1] = 1;
phi[1] = 1;
for (int i = 2; i < MAXN; i++) {
if (is_prime[i]) {
primes.push_back(i);
mu[i] = -1;
phi[i] = i - 1;
}
for (size_t j = 0; j < primes.size(); j++) {
int p = primes[j];
if (i * p >= MAXN) break;
is_prime[i * p] = false;
if (i % p == 0) {
mu[i * p] = 0;
phi[i * p] = phi[i] * p;
break;
} else {
mu[i * p] = -mu[i];
phi[i * p] = phi[i] * (p - 1);
}
}
}
// 预处理前缀和
for (int i = 1; i < MAXN; i++) {
prefix_mu[i] = prefix_mu[i-1] + mu[i];
prefix_phi[i] = prefix_phi[i-1] + phi[i];
}
}
// 求 [1,n] x [1,m] 中 gcd=1 的对数
long long count_coprime(int n, int m) {
long long res = 0;
int lim = min(n, m);
for (int l = 1, r; l <= lim; l = r + 1) {
r = min(n / (n / l), m / (m / l));
res += (prefix_mu[r] - prefix_mu[l-1]) * (n / l) * (m / l);
}
return res;
}
// 求 sum_{i=1}^n sum_{j=1}^m gcd(i,j)
long long sum_gcd(int n, int m) {
long long res = 0;
int lim = min(n, m);
for (int l = 1, r; l <= lim; l = r + 1) {
r = min(n / (n / l), m / (m / l));
res += (prefix_phi[r] - prefix_phi[l-1]) * (n / l) * (m / l);
}
return res;
}
int main() {
linear_sieve();
int n = 1000, m = 1000;
cout << "mu[1..10]: ";
for (int i = 1; i <= 10; i++) cout << mu[i] << " ";
cout << "\n";
cout << "phi[1..10]: ";
for (int i = 1; i <= 10; i++) cout << phi[i] << " ";
cout << "\n";
cout << "count_coprime(1000,1000): " << count_coprime(n, m) << endl;
cout << "sum_gcd(1000,1000): " << sum_gcd(n, m) << endl;
return 0;
}