【数论】莫比乌斯反演

一、引言

莫比乌斯反演(Möbius Inversion)是数论中一个非常重要的工具,广泛应用于组合数学、数论函数、容斥原理、算法竞赛等领域。它能够将某些复杂的求和问题转化为更易处理的形式。

在算法竞赛中,莫比乌斯反演常用于解决涉及最大公约数(GCD)最小公倍数(LCM)整除关系的计数问题。


二、前置知识

1. 数论函数(Arithmetic Function)

定义在正整数集上的函数称为数论函数。常见的有:

  • 恒等函数:I(n)=1I(n) = 1I(n)=1
  • 单位函数:ϵ(n)=[n=1]\epsilon(n) = [n=1]ϵ(n)=[n=1](当 n=1n=1n=1 时为1,否则为0)
  • 恒等函数:id(n)=nid(n) = nid(n)=n
  • 因子个数函数:d(n)=∑d∣n1d(n) = \sum_{d|n} 1d(n)=dn1
  • 因子和函数:σ(n)=∑d∣nd\sigma(n) = \sum_{d|n} dσ(n)=dnd
  • 欧拉函数:ϕ(n)\phi(n)ϕ(n):小于等于 nnn 且与 nnn 互质的正整数个数

2. 狄利克雷卷积(Dirichlet Convolution)

对于两个数论函数 fffggg,其狄利克雷卷积定义为:
(f∗g)(n)=∑d∣nf(d)g(nd) (f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right) (fg)(n)=dnf(d)g(dn)

狄利克雷卷积满足:

  • 交换律:f∗g=g∗ff * g = g * ffg=gf
  • 结合律
  • 单位元是 ϵ(n)\epsilon(n)ϵ(n),即 f∗ϵ=ff * \epsilon = ffϵ=f
  • f(1)≠0f(1) \neq 0f(1)=0,则 fff 存在逆元 f−1f^{-1}f1,使得 f∗f−1=ϵf * f^{-1} = \epsilonff1=ϵ

三、莫比乌斯函数(Möbius Function)

1. 定义

莫比乌斯函数 μ(n)\mu(n)μ(n) 是一个重要的数论函数,定义如下:

μ(n)={1,n=1(−1)k,n=p1p2⋯pk(k个不同质因子)0,其他情况(即 n 有平方因子) \mu(n) = \begin{cases} 1, & n = 1 \\ (-1)^k, & n = p_1 p_2 \cdots p_k \text{(}k\text{个不同质因子)} \\ 0, & \text{其他情况(即 }n\text{ 有平方因子)} \end{cases} μ(n)=1,(1)k,0,n=1n=p1p2pkk个不同质因子)其他情况(即 n 有平方因子)

换句话说:

  • 如果 n=1n=1n=1μ(n)=1\mu(n) = 1μ(n)=1
  • 如果 nnnkkk 个不同质数的乘积(无平方因子),μ(n)=(−1)k\mu(n) = (-1)^kμ(n)=(1)k
  • 如果 nnn 含有平方因子(如 4,8,9,124, 8, 9, 124,8,9,12 等),μ(n)=0\mu(n) = 0μ(n)=0

2. 性质

性质1:狄利克雷卷积性质

∑d∣nμ(d)=[n=1]=ϵ(n) \sum_{d|n} \mu(d) = [n=1] = \epsilon(n) dnμ(d)=[n=1]=ϵ(n)
即:μ∗I=ϵ\mu * I = \epsilonμI=ϵ

证明

  • n=1n=1n=1∑d∣1μ(d)=μ(1)=1\sum_{d|1} \mu(d) = \mu(1) = 1d∣1μ(d)=μ(1)=1
  • n>1n > 1n>1,设 n=p1a1p2a2⋯pkakn = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}n=p1a1p2a2pkak,只考虑无平方因子的 ddd(即 dddp1,…,pkp_1,\dots,p_kp1,,pk 的子集乘积),则:
    ∑d∣nμ(d)=∑S⊆{1,…,k}(−1)∣S∣=∑i=0k(ki)(−1)i=(1−1)k=0 \sum_{d|n} \mu(d) = \sum_{S \subseteq \{1,\dots,k\}} (-1)^{|S|} = \sum_{i=0}^k \binom{k}{i} (-1)^i = (1-1)^k = 0 dnμ(d)=S{1,,k}(1)S=i=0k(ik)(1)i=(11)k=0
性质2:莫比乌斯函数是积性函数

a⊥ba \perp bab(互质),则 μ(ab)=μ(a)μ(b)\mu(ab) = \mu(a)\mu(b)μ(ab)=μ(a)μ(b)


四、莫比乌斯反演公式

1. 经典形式(标准形式)

设有两个数论函数 f(n)f(n)f(n)F(n)F(n)F(n),满足:
F(n)=∑d∣nf(d) F(n) = \sum_{d|n} f(d) F(n)=dnf(d)
则有反演公式:
f(n)=∑d∣nμ(d)F(nd) f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) f(n)=dnμ(d)F(dn)

等价地,若 F=f∗IF = f * IF=fI,则 f=F∗μf = F * \muf=Fμ

2. 另一种形式(倍数形式)

设有两个数论函数 f(n)f(n)f(n)F(n)F(n)F(n),满足:
F(n)=∑n∣df(d) F(n) = \sum_{n|d} f(d) F(n)=ndf(d)
则有:
f(n)=∑n∣dμ(dn)F(d) f(n) = \sum_{n|d} \mu\left(\frac{d}{n}\right) F(d) f(n)=ndμ(nd)F(d)

这个形式在处理“倍数”问题时非常有用。

:两种形式的本质是相同的,取决于你定义 FFF 的方式是“因子和”还是“倍数和”。


五、莫比乌斯反演的直观理解

莫比乌斯反演本质上是一种容斥原理的代数表达。

例如,考虑:
F(n)=∑d∣nf(d) F(n) = \sum_{d|n} f(d) F(n)=dnf(d)
你想从 FFF 恢复 f(n)f(n)f(n)。由于 F(n)F(n)F(n) 包含了所有 f(d)f(d)f(d)d∣nd|ndn),你可以用容斥的思想逐步“减去”其他项。

μ(d)\mu(d)μ(d) 的值正好对应了容斥中的符号(正负交替)和是否参与(为0则跳过)。


六、经典应用举例

例1:欧拉函数的莫比乌斯表示

我们知道:
∑d∣nϕ(d)=n \sum_{d|n} \phi(d) = n dnϕ(d)=n
id=ϕ∗Iid = \phi * Iid=ϕI

由莫比乌斯反演得:
ϕ(n)=∑d∣nμ(d)⋅nd=n∑d∣nμ(d)d \phi(n) = \sum_{d|n} \mu(d) \cdot \frac{n}{d} = n \sum_{d|n} \frac{\mu(d)}{d} ϕ(n)=dnμ(d)dn=ndndμ(d)

这个公式可用于快速计算 ϕ(n)\phi(n)ϕ(n),尤其是在筛法中。

例2:求 ∑i=1n∑j=1m[gcd⁡(i,j)=1]\sum_{i=1}^n \sum_{j=1}^m [\gcd(i,j) = 1]i=1nj=1m[gcd(i,j)=1]

即:有多少对 (i,j)(i,j)(i,j) 满足 gcd⁡(i,j)=1\gcd(i,j) = 1gcd(i,j)=1

解法
f(k)=∑i=1n∑j=1m[gcd⁡(i,j)=k]f(k) = \sum_{i=1}^n \sum_{j=1}^m [\gcd(i,j) = k]f(k)=i=1nj=1m[gcd(i,j)=k]

我们要求 f(1)f(1)f(1)

F(k)=∑k∣df(d)=∑i=1n∑j=1m[k∣gcd⁡(i,j)]=⌊nk⌋⌊mk⌋F(k) = \sum_{k|d} f(d) = \sum_{i=1}^n \sum_{j=1}^m [k | \gcd(i,j)] = \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloorF(k)=kdf(d)=i=1nj=1m[kgcd(i,j)]=knkm

由莫比乌斯反演(倍数形式):
f(k)=∑k∣dμ(dk)F(d)=∑k∣dμ(dk)⌊nd⌋⌊md⌋ f(k) = \sum_{k|d} \mu\left(\frac{d}{k}\right) F(d) = \sum_{k|d} \mu\left(\frac{d}{k}\right) \left\lfloor \frac{n}{d} \right\rfloor \left\lfloor \frac{m}{d} \right\rfloor f(k)=kdμ(kd)F(d)=kdμ(kd)dndm

t=d/kt = d/kt=d/k,则 d=ktd = ktd=kt,得:
f(k)=∑t=1min⁡(n/k,m/k)μ(t)⌊nkt⌋⌊mkt⌋ f(k) = \sum_{t=1}^{\min(n/k, m/k)} \mu(t) \left\lfloor \frac{n}{kt} \right\rfloor \left\lfloor \frac{m}{kt} \right\rfloor f(k)=t=1min(n/k,m/k)μ(t)ktnktm

k=1k=1k=1 时:
f(1)=∑t=1min⁡(n,m)μ(t)⌊nt⌋⌊mt⌋ f(1) = \sum_{t=1}^{\min(n,m)} \mu(t) \left\lfloor \frac{n}{t} \right\rfloor \left\lfloor \frac{m}{t} \right\rfloor f(1)=t=1min(n,m)μ(t)tntm

这可以使用数论分块O(n)O(\sqrt{n})O(n) 时间内计算。


七、莫比乌斯函数的计算

1. 线性筛法求莫比乌斯函数

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

const int MAXN = 1e6 + 5;

vector<int> primes;
bool is_prime[MAXN];
int mu[MAXN];  // 莫比乌斯函数
int phi[MAXN]; // 欧拉函数(顺便计算)

void linear_sieve() {
    fill(is_prime, is_prime + MAXN, true);
    is_prime[0] = is_prime[1] = false;
    mu[1] = 1;
    
    for (int i = 2; i < MAXN; i++) {
        if (is_prime[i]) {
            primes.push_back(i);
            mu[i] = -1;   // 单个质数
            phi[i] = i - 1;
        }
        
        for (int p : primes) {
            if (i * p >= MAXN) break;
            
            is_prime[i * p] = false;
            
            if (i % p == 0) {
                // p^2 整除 i*p,所以 mu[i*p] = 0
                mu[i * p] = 0;
                phi[i * p] = phi[i] * p;
                break;
            } else {
                // i 和 p 互质
                mu[i * p] = -mu[i];  // mu[i] * mu[p] = mu[i] * (-1)
                phi[i * p] = phi[i] * (p - 1);
            }
        }
    }
}

2. 使用莫比乌斯函数求欧拉函数(验证)

// 验证 phi(n) = sum_{d|n} mu(d) * (n/d)
int compute_phi_by_mobius(int n) {
    int res = 0;
    for (int d = 1; d * d <= n; d++) {
        if (n % d == 0) {
            res += mu[d] * (n / d);
            if (d * d != n) {
                res += mu[n / d] * d;
            }
        }
    }
    return res;
}

3. 应用:求 [1,n] x [1,m] 中 gcd=1 的对数

long long count_coprime_pairs(int n, int m) {
    long long res = 0;
    int lim = min(n, m);
    
    // 数论分块
    for (int l = 1, r; l <= lim; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        long long sum_mu = 0;
        for (int i = l; i <= r; i++) {
            sum_mu += mu[i];
        }
        res += sum_mu * (n / l) * (m / l);
    }
    
    return res;
}

但上面的 sum_mu 是逐段求的,效率不高。我们可以预处理莫比乌斯前缀和:

int prefix_mu[MAXN]; // prefix_mu[i] = mu[1] + mu[2] + ... + mu[i]

void precompute_prefix_mu() {
    prefix_mu[0] = 0;
    for (int i = 1; i < MAXN; i++) {
        prefix_mu[i] = prefix_mu[i-1] + mu[i];
    }
}

long long count_coprime_pairs_fast(int n, int m) {
    long long res = 0;
    int lim = min(n, m);
    
    for (int l = 1, r; l <= lim; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        res += (prefix_mu[r] - prefix_mu[l-1]) * (n / l) * (m / l);
    }
    
    return res;
}

八、进阶应用:∑i=1n∑j=1mgcd⁡(i,j)\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)i=1nj=1mgcd(i,j)

这是经典问题。

ans=∑i=1n∑j=1mgcd⁡(i,j)ans = \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)ans=i=1nj=1mgcd(i,j)

我们枚举 g=gcd⁡(i,j)g = \gcd(i,j)g=gcd(i,j)
ans=∑g=1min⁡(n,m)g⋅f(g) ans = \sum_{g=1}^{\min(n,m)} g \cdot f(g) ans=g=1min(n,m)gf(g)
其中 f(g)f(g)f(g) 是满足 gcd⁡(i,j)=g\gcd(i,j)=ggcd(i,j)=g 的对数。

由前面例子:
f(g)=∑t=1min⁡(n/g,m/g)μ(t)⌊ngt⌋⌊mgt⌋ f(g) = \sum_{t=1}^{\min(n/g, m/g)} \mu(t) \left\lfloor \frac{n}{gt} \right\rfloor \left\lfloor \frac{m}{gt} \right\rfloor f(g)=t=1min(n/g,m/g)μ(t)gtngtm

代入得:
ans=∑g=1min⁡(n,m)g∑t=1min⁡(n/g,m/g)μ(t)⌊ngt⌋⌊mgt⌋ ans = \sum_{g=1}^{\min(n,m)} g \sum_{t=1}^{\min(n/g, m/g)} \mu(t) \left\lfloor \frac{n}{gt} \right\rfloor \left\lfloor \frac{m}{gt} \right\rfloor ans=g=1min(n,m)gt=1min(n/g,m/g)μ(t)gtngtm

k=gtk = gtk=gt,则:
ans=∑k=1min⁡(n,m)⌊nk⌋⌊mk⌋∑g∣kg⋅μ(kg) ans = \sum_{k=1}^{\min(n,m)} \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloor \sum_{g|k} g \cdot \mu\left(\frac{k}{g}\right) ans=k=1min(n,m)knkmgkgμ(gk)

注意到 ∑g∣kg⋅μ(k/g)=(id∗μ)(k)\sum_{g|k} g \cdot \mu(k/g) = (id * \mu)(k)gkgμ(k/g)=(idμ)(k)

而我们知道:ϕ=id∗μ\phi = id * \muϕ=idμ,即 ϕ(k)=∑d∣kd⋅μ(k/d)\phi(k) = \sum_{d|k} d \cdot \mu(k/d)ϕ(k)=dkdμ(k/d)

所以:
ans=∑k=1min⁡(n,m)⌊nk⌋⌊mk⌋ϕ(k) ans = \sum_{k=1}^{\min(n,m)} \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloor \phi(k) ans=k=1min(n,m)knkmϕ(k)

结论
∑i=1n∑j=1mgcd⁡(i,j)=∑k=1min⁡(n,m)⌊nk⌋⌊mk⌋ϕ(k) \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j) = \sum_{k=1}^{\min(n,m)} \left\lfloor \frac{n}{k} \right\rfloor \left\lfloor \frac{m}{k} \right\rfloor \phi(k) i=1nj=1mgcd(i,j)=k=1min(n,m)knkmϕ(k)

这比枚举 gggttt 更高效!

C++ 实现:

long long sum_gcd_pairs(int n, int m) {
    long long res = 0;
    int lim = min(n, m);
    
    for (int l = 1, r; l <= lim; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        long long sum_phi = 0;
        for (int i = l; i <= r; i++) {
            sum_phi += phi[i];
        }
        res += sum_phi * (n / l) * (m / l);
    }
    
    return res;
}

预处理 ϕ\phiϕ 前缀和可进一步优化。


九、完整C++代码示例

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

const int MAXN = 1e6 + 5;

vector<int> primes;
bool is_prime[MAXN];
int mu[MAXN], phi[MAXN];
long long prefix_mu[MAXN], prefix_phi[MAXN];

void linear_sieve() {
    fill(is_prime, is_prime + MAXN, true);
    is_prime[0] = is_prime[1] = false;
    mu[1] = 1;
    phi[1] = 1;
    
    for (int i = 2; i < MAXN; i++) {
        if (is_prime[i]) {
            primes.push_back(i);
            mu[i] = -1;
            phi[i] = i - 1;
        }
        
        for (size_t j = 0; j < primes.size(); j++) {
            int p = primes[j];
            if (i * p >= MAXN) break;
            
            is_prime[i * p] = false;
            
            if (i % p == 0) {
                mu[i * p] = 0;
                phi[i * p] = phi[i] * p;
                break;
            } else {
                mu[i * p] = -mu[i];
                phi[i * p] = phi[i] * (p - 1);
            }
        }
    }
    
    // 预处理前缀和
    for (int i = 1; i < MAXN; i++) {
        prefix_mu[i] = prefix_mu[i-1] + mu[i];
        prefix_phi[i] = prefix_phi[i-1] + phi[i];
    }
}

// 求 [1,n] x [1,m] 中 gcd=1 的对数
long long count_coprime(int n, int m) {
    long long res = 0;
    int lim = min(n, m);
    for (int l = 1, r; l <= lim; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        res += (prefix_mu[r] - prefix_mu[l-1]) * (n / l) * (m / l);
    }
    return res;
}

// 求 sum_{i=1}^n sum_{j=1}^m gcd(i,j)
long long sum_gcd(int n, int m) {
    long long res = 0;
    int lim = min(n, m);
    for (int l = 1, r; l <= lim; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        res += (prefix_phi[r] - prefix_phi[l-1]) * (n / l) * (m / l);
    }
    return res;
}

int main() {
    linear_sieve();
    
    int n = 1000, m = 1000;
    cout << "mu[1..10]: ";
    for (int i = 1; i <= 10; i++) cout << mu[i] << " ";
    cout << "\n";
    
    cout << "phi[1..10]: ";
    for (int i = 1; i <= 10; i++) cout << phi[i] << " ";
    cout << "\n";
    
    cout << "count_coprime(1000,1000): " << count_coprime(n, m) << endl;
    cout << "sum_gcd(1000,1000): " << sum_gcd(n, m) << endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值