linux部署es(云盘下载es)

本文介绍了在Linux中部署ES的操作流程。需下载elasticsearch、kibana、logstash、elasticsearch - analysis - ik和elasticsearch - analysis - pinyin等工具,并给出了下载网址。还提供了已下载好的安装包链接及提取码,强调安装包版本要一致,ES版本不宜过高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

linux中部署es整个操作流程!
在这里插入图片描述

一,首选需要下载的是elasticsearch,还有黄金搭档kibana(可视化工具) 俺的 logstash(同步mysql数据到elastic)俺的 elasticsearch-analysis-ik(分词器就是搜索用的) 俺的 elasticsearch-analysis-pinyin (拼音分词器)
在这里插入图片描述

网址:
1,https://www.elastic.co/cn/elasticsearch/(官网)
2,https://github.com/medcl/elasticsearch-analysis-ik/releases(分词器选择版本号后elasticsearch-analysis-ik-7.x.x.zip 点击下载)
在这里插入图片描述

3,https://github.com/medcl/elasticsearch-analysis-pinyin/releases(拼音分词器跟上面的分词器雷同)
在这里插入图片描述

下载完成后就可以进行linux部署了,这个下载是有点慢,大家可以喝杯java 耐心等待下!
如果想同时下载这些的话,那就可以移步,本人已下载了,给大家省的流量,直接下载部署即可
链接:https://pan.baidu.com/s/1EJUPQeazbB-vKhBPY2YVGg
提取码:k35r
本人安装版本是7.6.0
所有的安装包必须要保持版本一致,如果不一致可能会出现chua bo(二声)es版本也不要太高,要不然对jdk的要求也高,反正我这个也黄牌警告我jdk版本低,又不是红牌,不影响我踢球!

### 如何在本地环境中部署 DeepSeek 并从云盘下载所需文件 #### 准备工作 为了成功完成 DeepSeek 模型的本地部署,需先确认计算机硬件条件并选择合适的模型版本。对于 DeepSeek-R1-Distill Models 版本的选择应依据个人电脑的具体配置情况[^1]。 #### 获取模型及相关资源 访问指定解决方案链接获取详细的指导文档和必要的安装包。通过该页面可以了解到更多关于如何调用云端API的信息,尽管这里更关注于本地部署流程[^2]。 #### 安装依赖环境 确保已安装 Python 和 pip 工具链,并设置好虚拟环境(推荐)。接着按照官方说明安装所需的库和其他依赖项。 ```bash pip install -r requirements.txt ``` #### 下载模型权重 前往提供的阿里云存储位置或其他官方渠道下载所选型号对应的预训练参数文件。注意保存路径以便后续加载使用。 #### 配置运行脚本 创建或编辑启动Python程序以初始化模型实例并将之前获得的数据集映射进去。下面给出一段简单的代码片段用于展示这一过程: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name_or_path = "path_to_downloaded_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path) def predict(text_input): inputs = tokenizer(text_input, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax().item() return model.config.id2label[predicted_class_id] print(predict("Your test sentence here")) ``` 以上步骤完成后即实现了 DeepSeek 模型在本地机器上的基本搭建与测试验证功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值