神经网络阅读整理

CNN参考书籍https://icer-zsj.blog.csdn.net/article/details/148868463深度学习的人工神经元https://icer-zsj.blog.csdn.net/article/details/148895106神经网络的架构https://icer-zsj.blog.csdn.net/article/details/148898627深度学习之分类手写数字的网络https://icer-zsj.blog.csdn.net/article/details/148899269梯度下降算法学习图像https://icer-zsj.blog.csdn.net/article/details/148900140数字识别神经网络的实现-CSDN博客https://icer-zsj.blog.csdn.net/article/details/148922680深度学习的引出https://icer-zsj.blog.csdn.net/article/details/148926026交叉熵代价函数https://icer-zsj.blog.csdn.net/article/details/148928283神经⽹络可以计算任何函数的可视化证明https://icer-zsj.blog.csdn.net/article/details/149019604深度学习中的一些名词https://icer-zsj.blog.csdn.net/article/details/149065626反向传播算法简介https://icer-zsj.blog.csdn.net/article/details/148927080柔性最大值解决学习缓慢问题https://icer-zsj.blog.csdn.net/article/details/148948971神经网络中的过度拟合问题https://icer-zsj.blog.csdn.net/article/details/148949602神经网络简介https://icer-zsj.blog.csdn.net/article/details/149223836神经网络中的规范化https://icer-zsj.blog.csdn.net/article/details/148952192深度神经⽹络为何很难训练https://icer-zsj.blog.csdn.net/article/details/149040226深度学习之卷积神经网络https://icer-zsj.blog.csdn.net/article/details/149042166其他的深度学习模型https://icer-zsj.blog.csdn.net/article/details/149045826   
神经网络中的反向传播https://icer-zsj.blog.csdn.net/article/details/149217295

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值