
神经网络
文章平均质量分 54
涉及神经网络设计及优化
zzb103749
用大数据绘制未来的蓝图。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
GoogleNet、RestNet
1、GoogleNet原创 2022-02-09 09:15:00 · 1821 阅读 · 0 评论 -
目标检测算法研究
1、目标检测基本介绍1.1、项目结构 1.2、目标检测的算法分类1.2.1两步走的目标检测:先进行区域推荐、而后进行目标分类代表算法 :R-CNN、 SPP-net、Fast-R-CNN、Faster R-CNN1.2.2、端到端的目标检测:采用一种网络一步到位 代表:YOLO、SSD1.3目标检测的本质分类问题和目标检测问题的对比:分类问题:N个类别 输入:图片 输出:类别 评估...原创 2021-12-15 17:44:44 · 4223 阅读 · 0 评论 -
1、神经网络优化
1、梯度理解梯度 - 知乎2、激活函数 对于上面两张图进行解释:第一张是人工神经元,其是模拟人类神经信息的传递过程,第二种就神经网络,可以看出神经网络是由大量神经元构成的,其中神经的计算过程是 ...原创 2021-08-06 10:48:02 · 121 阅读 · 0 评论 -
1、神经网络的训练过程以及优化
1、更新权重和偏置:对于权重和偏置的优化本质就是使得模型的损失最小,也就是对于损失函数求取最小值,此时的权重和偏置就是模型最终的权重和偏置:2、权重和偏置的更新公式: 其中Wnew为下一时刻的更新权重,也就是目标值,Wold是当前时刻的权重,loss为损失函数(变量为权重和偏置),为学习率,采用梯度下降算法进行优化权重和偏置。...原创 2021-08-06 11:34:39 · 1031 阅读 · 0 评论 -
1、numpy、pytorch学习
# -*- coding:utf-8 -*-"""@author:@file: test.py@time: 2021/8/8 13:52@desc:"""'''#break、continue、pass功能的测试'''#测试pass功能点,结果:继续循环,不会做任何操作number = 10for i in range(10): if i == 5: pass if i < number: print("The number is .原创 2021-11-19 09:34:42 · 194 阅读 · 0 评论 -
keras研究
1、mnist数据的分类,该实验进行了完整的模型训练测试以及预测,将新的样本送入进行预测,直观表征模型的有效性。keras送入模型训练的是ndarray数据,不要转化成tensor。# -*— coding:utf-8 -*-# @time :2021/10/27 11:49# @Author :zhangzhoubin'''Keras的研究,基于tensorflow theano框架的二次封装''''''功能:实现minist分类'''#导入第三方模块import cv2.原创 2021-11-17 11:11:09 · 218 阅读 · 0 评论 -
pytorch学习
#导入所需的模块import torcha=torch.rand(2,3)print(a)b=torch.randn(3,4) #产生均值为0 方差为1的矩阵c=torch.range(1,10,1)print(c)#矩阵相加d=torch.randn(3,4)e=torch.randn(3,4)f=torch.add(d,e)g=torch.div(d,e)print(f)print(g)#搭建神经网络(依靠一定计算更新梯度)# import torch## ba.原创 2021-11-17 11:12:45 · 517 阅读 · 0 评论