统计学出身但编程一般,该选择数据分析还是挖掘算法?

一名统计学硕士面临职业选择困境,编程能力一般,文章讨论了数据分析与挖掘算法岗位的差异、竞争力及成长路径。建议根据个人兴趣与能力提升,考虑试错成本和长远发展,强调兴趣驱动的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0x00 前言

本文的话题来自一名应届生关于毕业后职业发展方向的选择。

在职业选择上,数据分析和算法工程师是很多小伙伴都会纠结选择的地方,本文正好对该问题进行了讨论,也希望给更多的小伙伴以参考。

0x01 职业困惑

问题

统计学出身但编程不强的硕士应届生,毕业了该选择数据分析还是挖掘算法路径?

问题描述

各位前辈们好,我是国内某985的研二学生,还有一年毕业,研究生阶段主要跟导师做数据算法的研究,发过一篇会议论文,还有篇算法相关的毕业论文正在写。明年就毕业了,周围不少也在陆续进行暑期实习,但是感觉拿到算法工程师岗位实习的同学还是以本科学CS的为主,而我从本科到研究生都是统计学,本科还辅修了经济学学位,编程开发水平真的很一般,SQL和Python这类日常用的工具使用没问题,但距离编程开发、数据结构、代码素养之类还有很大的距离。因此想问大家对于我这样情况的学生未来职业选择的问题:

  1. 以我这样统计出身但编程不强的背景,是否在应聘数据挖掘/算法工程师的岗位时有竞争力?

  2. 我也不排斥做数据分析师,也觉得靠近商业、改进业务也很有趣。但是现在数据分析岗位的门槛比较低,算法用的并不多,待遇总体上也比做算法低很多,如果选择做数据分析我这些年为算法做的努力是不是白费了呢?

0x02 大家的讨论

讨论1

非CS本科运气好转做了偏算法相关研发,说实话确实工程能力,算法结构有很大的欠缺,在实际项目落地的时候就经常考虑不足,写的代码思路和速度也能明显感觉到自己和科班的差距,经常打击自信心,但是主要还是算法岗,所以我也勉强凑合可以用,遇到啥学啥喽。我觉得其实最应该考虑好自己兴趣和擅长点,一个事自己有兴趣且能长久坚持获得持续成就感才能停过长久工作生涯哇。

讨论2

一般我都是建议先做难的岗位。算法对于学历背景和编程能力的要求是要高于数仓和数分的。其实上周我的实习生也问了我这个问题,他想做数据挖掘,我也鼓励他做数据挖掘,先尝试去做更难的、技

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值