HashMap实现LRU(最近最少使用)缓存更新算法

电话面试中遇到使用HashMap实现LRU缓存的问题。初始想法是扩展HashMap节点并使用引用计数,但效率低下。面试官建议使用最小堆优化,但未能给出详细方案。后来发现Java的LinkedHashMap内置了LRU机制,通过accessOrder属性实现访问顺序的缓存淘汰策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近阿里巴巴电话面试被问到了如何使用固定容量的HashMap,实现LRU算法。当时一脸懵逼,平时用HashMap也就用来快速存取数据而已,容量都是不限的。

想了半天,想到对node节点进行扩展,加入引用计数,然后到达指定容量后,删除引用计数最少的。
面试官质疑这样效率太低了,能不能优化下。
想到删除时,需要遍历所有元素,代价为O(n),太大了。想到可以用最小堆来进行筛选。被问到建堆的节点值是什么,这块没想好,卡壳了。

面试完之后,网上搜了下,才发现Java官方已经替我们预留了LRU算法的框架,在LinkedHashMap里。我们只需要扩展下即可,代码示例如下:

/**
    * Constructs an empty <tt>LinkedHashMap</tt> instance with the
    * specified initial capacity, load factor and ordering mode.
    *
    * @param  initialCapacity the initial capacity
    * @param  loadFactor      the load factor
    * @param  accessOrder     the ordering mode - <tt>true</tt> for
    *         access-order, <tt>false</tt> for insertion-order
    * @throws IllegalArgumentException if the initial capacity is negative
    *         or the load factor is nonpositive
    */
   public LinkedHashMap(int initialCapacity,
                        float loadFactor,
                        boolean accessOrder) {
   
   
       super(initialCapacity, loadFactor);
       this.accessOrder = accessOrder;
   }

   //方法为protected ,摆明了是想被继承、重写
   protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
   
   
       return false;
   }

使用accessOrder来标识是使用访问顺序,还是插入顺序。默认为插入顺序。当accessOrder为访问顺序、容量固定时,即为LRU
举例如下:


class LRULinkedHashMap<K,V> extends LinkedHashMap<K,V> {
   
   
	
	/**
	 * 
	 */
	private static final long serialVersionUID = 1882839504956564761L;
	
	private int capacity;
	
	public LRULinkedHashMap(int capacity) {
   
   
		super(capacity,
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值