快速幂详解【模板】

快速幂是一种高效的算法,用于求解大数的幂次运算,将原本O(n)的时间复杂度降低到O(log2n)。通过不断平方并累加的方式,可以快速计算出如3^7这样的指数问题。算法适用于处理如64位整数乘法等题目,本文提供了快速幂的思路解析及AcWing和洛谷平台的AC代码模板。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

快速幂

洛谷链接

AcWing链接


快速幂的思想

当我们求37

朴素算法就是Pow,或者连乘7次,这个要进行7次运算

但我们可以用快速幂的思想

31=3
32=9
33=81

然后再将三次的值相加,就可以求出37
这个思想还可以用于这道题 64位整数乘法

这个思想非常高效,可以将原来O(n)的算法改成O(log2n)


快速幂的模板

int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

时间复杂度为(log2n)


Ac Code 1(AcWing)

#include <cstdio>

using namespace std;
int a,b,p;


int main()
{
    scanf("%d%d%d",&a,&b,&p);
    int res=1 % p;
    //%p是因为要防止b=0即0次方,一旦b=0的话,就不会循环,导致输出的时候没有%p
    while(b)
    {
        if(b&1) res= res *1ll *a % p;
        //可能int会存不下,所以*1ll化为long long
        a = a * 1ll * a % p;
        b >>= 1;  //去掉个位
    }
    printf("%d", res);
    
    return 0;
}

Ac Code 2 (洛谷)

#include <cstdio>

using namespace std;
int a,b,p;


int main()
{
    scanf("%d%d%d",&a,&b,&p);
    int res=1 % p;
    int a1=a,b1=b; 
    //%p是因为要防止b=0即0次方,一旦b=0的话,就不会循环,导致输出的时候没有%p
    while(b)
    {
        if(b&1) res= res *1ll *a % p;
        //可能int会存不下,所以*1ll化为long long
        a = a * 1ll * a % p;
        b >>= 1;  //去掉个位
    }
    printf("%d^%d mod %d=%d",a1,b1,p, res);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值