
机器学习
文章平均质量分 61
__矮油不错哟
多多交流
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
线性回归之最小二乘法——收藏
转载: 来源于:线性回归之最小二乘法 线性回归 线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。 最小二乘法 线性回归过程主要解决的就是如何通过样本来获取最佳的拟合线。最常用的方法便是最小二乘法,它是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。 代 标题 ##数推导: 假设拟合直线为:y=ax+by=ax+by=ax+b 对任...转载 2018-04-30 08:44:45 · 589 阅读 · 0 评论 -
《深度学习Python实践》第18章——持久化加载模型
序列化和反序列化机器学习的模型 需要将生成的机器学习模型序列化,并将其发布到生产环境。 当有新的数据出现时,需要反序列化已保存的模型,然后用其预测新的数据。 1. 通过pickle序列化和反序列化机器学习模型 pickle是标准的python序列化方法,可以通过它来序列化机器学习算法生成的模型,并将其保存到文件中。当需要对新数据进行预测时,将已保存的模型反序列化,并用其预测新的数据。 ...原创 2018-06-05 17:13:45 · 782 阅读 · 0 评论 -
《深度学习Python实践》第20章——回归项目实例
回归项目实例 1.导入并理解数据 import numpy as np from numpy import arange import matplotlib.pyplot as plt from pandas import read_csv,set_option from pandas.plotting import scatter_matrix from sklearn.model_se...原创 2018-06-11 22:53:57 · 808 阅读 · 1 评论 -
《深度学习Python实践》第14章——自动流程
1.数据准备和生成模型的Pipeline Pipeline最小化数据损失 Pipeline能够处理训练数据和评估数据集之间的数据泄漏问题,通常在数据处理过程中对分离出的所有数据子集做同样的数据处理,如正态化处理。 from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_s...原创 2018-06-11 18:18:29 · 262 阅读 · 1 评论 -
《深度学习Python实践》第13章——审查回归算法
1. 线性回归 1.线性回归算法 from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LinearRegression filena...原创 2018-06-11 16:51:13 · 364 阅读 · 0 评论 -
《深度学习Python实践》第12章——审查分类算法
luojihuigui from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression filename='...原创 2018-06-11 14:30:22 · 374 阅读 · 0 评论 -
《机器学习Python实践》第3章——第一个机器学习项目
第三章——第一个机器学习项目 一个机器学习项目的步骤: 1)导入数据; 2)概述数据; 3)数据可视化; 4)评估算法; 5)实施预测。 导入类库 from pandas import read_csv from pandas import scatter_matrix from matplotlib import pyplot from sklearn.model_sel...原创 2018-06-04 11:05:46 · 467 阅读 · 0 评论 -
KNN——机器学习实战_Python3
机器学习实战 from numpy import * import operator def createDatSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels def classfy0(inX...原创 2018-05-20 16:08:39 · 340 阅读 · 0 评论 -
opencv 读取视频、打开摄像头、写入视频文件
参考:opencv 读取视频、打开摄像头、写入视频文件 1、打开视频文件 #include "opencv2/core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> using namespace cv; usi...转载 2018-05-20 15:02:55 · 478 阅读 · 0 评论 -
机器学习-关键词:正则化、过拟合、决策树
过拟合 过拟合是指学习时选择的模型所包含的参数过多,以至于出现这一对已知数据预测得很好,但对位置数据预测得含茶的现象。 即对训练数据预测得好,对测试数据预测得差的现象。 过拟合出现的情况: 1:样本容量很小时, 2:选择的模型所包含的参数过多。 两种常用的模型选择方法:正则化、交叉验证。 正则化是模型结构风险最小化策略的实现。 正则化项一般是模型复杂度的单调递增函数,模型越复杂,...原创 2018-04-24 22:29:20 · 1863 阅读 · 0 评论 -
《深度学习Python实践》第22章——文本分类实例
文本分类实例数据集链接:http://qwone.com/~jason/20Newsgroups/ 代码如下: from sklearn.datasets import load_files from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text impor...原创 2018-06-12 20:47:19 · 1399 阅读 · 0 评论