Dify + 本地大模型:一个数据分析项目原型验证的正确打开方式

前段时间,我构思了一个关于数据分析的个人项目,代号叫“明镜”。简单来说,就是想用一套现代化的数据技术栈(FastAPI, SQLAlchemy, PostgreSQL, Pandas.ai,Streamlit等等),打造一个能整合、分析个人银行流水,这是基础功能。同时高端一点的就是为关于银行流水证据调查提供数据分析支持的工具。

这个计划,从后端、数据库到前端,如果按部就班地开发,会是一个比较长的过程,特别是这个已经超出了我学习 FastAPI 的范畴了。数据分析是 Python 中非常大的一块专业的知识了。那么我们这个项目当中的第四阶段:“拥抱AI,智能分析”是我最期待的部分,因为比较有趣,我也好奇当我把大量的表格数据喂给 AI 的话,他到底能不能像我设想的那样,能全面准确地给我分析一遍。

正好最近看到一个观点,就是在构思项目原型的时候,可以先用 Dify 或者 n8n 这样的平台先搭建个工作流,把项目的各个模块功能放进去串起来跑一下,验证一下效果。当然对于我这个项目来说,本身的构想并没有多么新颖,现成的数据分析产品应该有好多了,整合好的数据喂给 AI 来分析研究也不是什么新鲜玩意儿。

因为要给之前的那个 RAG 的小项目在本地部署方便使用的模型,我用 Ollama 拉了个 deepseek-r1:8b 的模型作为回答问题的模型,然后加上想试试本地部署 Dify 。正好用这个组合来实践一下我在网上看到的这个观点,总之就是各种捣鼓。

这篇文章,就是想和大家聊聊这次原型试验的大体过程,也算是非常有趣了。我的 Ollama 和 Dify 都是使用 Docker 在本地部署的,具体的部署情况就不介绍了非常简单,看看官方文档跟着搞一下就好了。

第一部分:用 Dify 编排工作流

在正式动工前,先验证最核心、最不确定的部分,这是敏捷开发的精髓。我的目标很明确:就是想体验一下Dify这个产品,同时看看AI分析流水到底靠不靠谱。

为了让这次试验能纯粹地聚焦在AI的分析能力上,我决定先绕开真实项目中最头疼的一步:数据清洗。另外一个原因就是 Dify 还是聚焦于 AI 相关的功能,他的节点当中主要是跟 AI 相关的各种功能节点,其他的基本上没有。这方面 n8n 可能更好点,后面再研究下 n8n 。现实中的银行流水格式五花八门,处理起来非常麻烦。那么这里是为了验证使用我先用了一个非常简单的小表格,里面就放了几条数据。看看 AI 这位“大厨”到底能做出什么菜。

图片

我在Dify上搭建的原型流程非常经典,只有简单的四个节点:

开始` ➡️ `文档提取器` ➡️ `LLM(AI模型)` ➡️ `结果输出

图片

  1. \1. 开始:这里就是我的操作台,可以上传准备好的CSV文件,还能输入我想问AI的问题,那么对这个简单的表,我问的问题是“帮我计算一下总支出是多少?”。
  2. \2. 文档提取器:这个节点特别关键。AI自己其实不认识“.csv”这种文件。这个节点就像一个翻译官,负责把文件打开,把里面的文字内容提取出来,变成AI能看懂的格式。没有它,后面的一切都无从谈起。
  3. \3. LLM:这是整个流程的大脑。我把它连接到我本地电脑上通过Ollama跑的deepseek-r1:8b大模型。它会同时收到从文件里提取出来的数据,和我提出的问题。
  4. \4. 结果输出:把AI分析后的答案显示出来。

整个过程几分钟就搭好了,一个可以和AI对话的分析工具原型就这么诞生了。那么最后 AI 经过思考,把所有标记为负数的值做个了求和,最后给我算出来总支出。简单的数据模型处理起来还是比较游刃有余的。

第二部分:测试复杂数据

基础的流程跑通之后,就让他来试试复杂数据,我让 AI 给出了一份带有可疑交易的,内容多一点的 mock 表格。

图片

结果一言难尽。AI 思考了半天,确实输出了洋洋洒洒的分析报告,但仔细一看,都没在点子上。

  • • 它能看到一些最表面的东西,比如交易时间在半夜,或者交易地点在国外。
  • • 但对于需要把好几条数据连起来看才能发现的“拆分交易”模式,它完全没反应。
  • • 对于那笔“巨款流入后短时间又迅速流出”的明显洗钱特征,它也视而不见,还认为这是“正常的投资理财和家庭开支”。

然后我尝试去优化提示词,把各种金融专家的分析方法都写进去教它,结果适得其反,它干脆“罢工”了,把所有交易都判断为“正常”。

从这个结果来看:我们真的不能对当前通用大模型的逻辑推理能力抱有不切实际的幻想。 让它去独立完成这种需要高度严谨、多步推理的复杂分析任务,它真的会“力不从心”。目前可以引入,但是只能安排点辅助工作。至于使用 API 来直接调用普通的模型,我觉得可能会好点,但也不能幻想用 AI 来代替人的分析。

第三部分:我们到底该让AI做什么?

那么回到之前的这个项目构思里,想引入 AI 的话,他在项目里到底能干点什么?

AI的终极定位:一个能听懂人话的“数据库查询翻译官”

不应该是指望 AI 包办一切,而应该是一个各司其职、完美协作的专业团队。

我用一个大餐厅的运作流程来解释,会非常清晰:

  • 1. 食材初加工区 (Pandas)
    餐厅每天从不同的供应商那里收到各种食材(就像我们从不同银行拿到格式五花八门的流水文件),有的带着泥,有的尺寸不一。这些原始食材是不能直接进仓库或下锅的。Pandas 就像是这个初加工区里最得力的帮厨团队,他们负责把所有杂乱的食材进行清洗、整理和标准化。比如,把A供应商送来的长条土豆和B供应商送来的圆形土豆,全都削皮、清洗,然后统一切成标准的滚刀块。这个过程,就是我们项目中的“数据清洗”阶段,确保所有进入我们系统的交易数据都是干净、统一、立即可用的。
  • 2. 后台数据库(PostgreSQL)
    这里是餐厅那个巨大、干净、所有食材都摆放得井井有条的恒温仓库。经过“食材初加工区”处理好的标准食材(干净、统一的交易数据),被整齐地码放在这里,随时等待厨房调用。它的特点是精确、可靠、存取快速。
  • 3. 后端代码(FastAPI + SQLAlchemy)
    这是全自动化的机器人厨房。厨房里有各种精确的菜谱(我们的代码逻辑),它知道怎么根据订单,从“数据仓库”里又快又准地取出需要的食材(数据),然后进行分毫不差的烹饪(计算、聚合、筛选)。
  • 4. 前端界面(Streamlit)
    这就是你坐的餐桌,干净整洁。你在这里点餐,也在这里享用厨房做好的菜品(数据分析结果)。
  • 5. AI(聪明伶俐的点餐员)
    现在,AI的真正角色来了。你不需要去研究厨房厚厚的、写满专业术语的菜单(比如SQL查询语句),你只需要用大白话对这个点餐员说:“我想要一份上个月所有吃饭的账单,再帮我算算一共花了多少钱。”

这个聪明的“点餐员”在将你的话翻译成“厨房行话”时,就可以使用像 PandasAI 这样的神奇工具。你告诉它“我想看看上个月什么东西花钱最多”,PandasAI就能帮助AI生成一段精确的查询指令,去操作刚刚从后厨取出的那盘“食材”(数据),然后找出答案,最后再由AI用你最舒服的方式告诉你。

总结一下这个流程

原始、混乱的银行流水文件 ➡️ Pandas进行清洗和标准化 ➡️ 存入干净的PostgreSQL数据库 ➡️ 你在Streamlit前端用大白话提问 ➡️ AI(在PandasAI等工具的帮助下)将你的话翻译成精确的查询指令 ➡️ FastAPI后端执行指令,从数据库中取出数据并计算 ➡️ 最终结果呈现在你的面前。

在这个流程里:

  • Pandas 保证了我们“入库数据”的质量。
  • AI (PandasAI) 保证了我们“人机交互”的流畅和智能。
  • 后端和数据库 保证了我们“数据处理”的准确和高效。

这样一来,整个“明镜”项目的蓝图就非常清晰、完整且可靠了。每一个环节都有最适合它的工具来负责,这才是构建一个强大数据分析应用的正确方式。

AI能立刻听懂你的话,然后转身用厨房能听懂的“行话”,在点餐系统上下单。几秒钟后,机器人厨房就把精确无误的菜品(数据结果)送到了你的餐桌上。

在这个模式里,AI负责和人打交道,代码和数据库负责保证结果的绝对准确。这才是最靠谱、最强大的工作方式。

AI的其他定位:一个有趣、有温度的“贴心财务管家”

那么除了作为自然语言查询的翻译,AI 还能干什么。也可以做点有趣的工作,把这个项目当作个人财务分析小工具来用的话。

  • 它可以是“财务顾问”:我们用代码把上个月的总收支、储蓄率算好,然后把这些准确的数字喂给AI,让它用鼓励的、友善的语言,帮我们生成一份图文并茂的财务月报,再提点小建议。它负责“表达”,我们负责“准确”。
  • 它可以是“百变伙伴”:我们可以通过改变给AI的“人设”指令,让它扮演不同的角色。今天可以让它当一个说话严谨的“CFO”,明天可以让他当一个满嘴骚话的“毒舌监工”,后天又可以变成一个给你加油打气的“热心伙伴”。这让枯燥的财务分析过程,充满了互动和乐趣。

总结

这次用Dify进行的“明镜”项目原型试验,虽然在AI分析能力上“翻了车”,但却是一次无比宝贵的探索。它让我明白了:

  1. \1. Dify这种低代码工作流确实是验证有关AI项目想法的绝佳工具,能让我们在投入大量开发资源前,快速“试错”。
  2. \2. 我们必须对当前AI的能力边界有清醒的认识,不盲目神话,也不轻易看衰。
  3. \3. 最好的AI应用,往往是“人机协作”的艺术。找到那个AI最擅长、我们最需要的结合点,才能让项目真正落地并产生价值。

希望我这个验证过程,能对同样在探索AI应用的你有所帮助。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>嗯,用户想了解Dify与SQLite结合的实例。首先,我需要确认Dify是什么。Dify一个开源的AI应用开发平台,帮助用户快速构建基于大语言模型的应用,比如智能客服、自动文本生成等。而SQLite是一个轻量级的嵌入式数据库,适合本地存储和小型应用。 接下来,用户可能想知道如何将两者结合使用。常见的应用场景可能包括使用Dify处理自然语言查询,然后将结果存储到SQLite数据库中,或者从SQLite中读取数据供Dify处理。比如,用户可能想通过自然语言查询数据库,或者让Dify生成的回答保存到本地数据库。 然后,我需要考虑具体步骤。首先,安装Dify和SQLite的Python库。Dify可能需要使用其API或SDK,而SQLite3通常是Python自带的。然后,设计一个示例场景,比如用户通过自然语言查询,Dify解析后生成SQL语句,执行并返回结果。或者Dify生成的数据存入SQLite。 需要确保示例代码正确。比如,用Dify的API发送提示,生成SQL查询,然后用sqlite3执行。要注意错误处理,比如SQL注入问题,但如果是本地使用可能风险较低。另外,可能需要处理数据库连接、游标操作等。 用户可能还关心实际应用中的注意事项,比如性能问题,SQLite适合轻量级应用,数据量大的话可能需要其他数据库。另外,Dify的提示工程需要优化,确保生成的SQL正确有效。 最后,总结使用场景,比如快速原型开发、本地数据处理工具、教育演示等。确保用户理解两者的结合如何提升效率,同时保持简单易用。</think>好的,我将以结构化的方式为你介绍 Dify 与 SQLite 结合的实例,并提供一个典型应用场景的实现思路: --- ### 一、基础概念 1. **Dify 定位** - 开源 AI 应用开发框架,支持通过可视化工作流快速搭建基于 LLM 的应用 - 核心功能:Prompt 工程、API 部署、数据上下文管理 - 典型场景:智能客服、文档分析、自动化流程 2. **SQLite 特点** - 轻量级嵌入式关系型数据库(单文件存储) - 零配置、无服务端,适合本地化数据管理 - 支持标准 SQL 语法 --- ### 二、结合场景示例 **场景描述**: 通过自然语言查询 SQLite 数据库中的数据,例如用户提问:"显示最近一个月订单金额大于500的客户姓名" #### 实现步骤: 1. **环境准备** ```bash pip install dify-client sqlite3 ``` 2. **数据库初始化** ```python import sqlite3 conn = sqlite3.connect('orders.db') cursor = conn.cursor() cursor.execute('''CREATE TABLE IF NOT EXISTS orders (id INT PRIMARY KEY, customer_name TEXT, amount REAL, order_date DATE)''') ``` 3. **Dify 配置** ```python from dify_client import ChatClient client = ChatClient(api_key="YOUR_DIFY_API_KEY") ``` 4. **自然语言转 SQL** ```python prompt = """ 请将以下问题转换为SQL查询语句(表名:orders,字段:id, customer_name, amount, order_date): 用户问题:{user_query} """ user_input = "显示最近一个月订单金额大于500的客户姓名" response = client.create_completion(prompt.format(user_query=user_input)) generated_sql = response.output.strip() # 输出示例:SELECT customer_name FROM orders WHERE amount > 500 AND order_date >= date('now','-1 month') ``` 5. **执行查询** ```python try: cursor.execute(generated_sql) results = cursor.fetchall() print("查询结果:", [row[0] for row in results]) except sqlite3.Error as e: print("SQL执行错误:", str(e)) ``` --- ### 三、进阶用法 1. **数据持久化** ```python # 将 Dify 生成的内容保存到数据库 def save_to_db(content): cursor.execute("INSERT INTO logs (ai_output) VALUES (?)", (content,)) conn.commit() ``` 2. **上下文管理** ```python # 使用 SQLite 存储对话历史 cursor.execute('''CREATE TABLE IF NOT EXISTS chat_history (session_id TEXT, timestamp DATETIME, user_input TEXT, ai_response TEXT)''') ``` 3. **数据验证模式** ```sql -- 在 SQLite 中创建数据校验规则 CREATE TRIGGER validate_amount BEFORE INSERT ON orders BEGIN SELECT CASE WHEN NEW.amount < 0 THEN RAISE(ABORT, '金额不能为负') END; END; ``` --- ### 四、注意事项 1. **安全边界** - 建议对生成的 SQL 添加白名单过滤(如禁止 DELETE/UPDATE) - 使用参数化查询防止注入:`cursor.execute("SELECT * FROM users WHERE id=?", (user_id,))` 2. **性能优化** ```sql -- 为常用查询字段建立索引 CREATE INDEX idx_order_date ON orders(order_date); ``` 3. **错误处理** ```python # 添加重试机制 from tenacity import retry, stop_after_attempt @retry(stop=stop_after_attempt(3)) def safe_query(sql): return cursor.execute(sql).fetchall() ``` --- ### 五、典型应用场景 1. **本地知识库问答系统** ```python # 将知识文档向量化存储于 SQLite cursor.execute('''CREATE VIRTUAL TABLE knowledge USING fts5(title, content)''') ``` 2. **自动化报表生成** ```python # 使用 Dify 解释查询结果 analysis_prompt = "请用简明中文解释以下销售数据:{query_results}" ``` 3. **低代码开发原型** ```python # 通过自然语言创建数据表 user_input = "创建一个学生信息表,包含学号、姓名、成绩" # Dify 输出:CREATE TABLE students (id INTEGER PRIMARY KEY, name TEXT, score REAL) ``` --- 这种组合特别适合需要快速实现以下类型的应用: - 本地化运行的智能数据助手 - 离线环境下的数据分析工具 - 结合业务系统的轻量级AI中间件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值