【Graph Embedding】LINE的原理、核心代码及其应用

LINE基本思想

LINE: Large-scale Information Network Embedding与DeepWalk相似都是基于领域相似假设的方法,DeepWalk是基于深度优先搜索,LINE是基于广度优先搜索。LINE还可以应用在带权图中(DeepWalk仅能用于无权图)。不同graph embedding方法之间的一个主要区别是图中顶点之间的相似度的定义不同,在LINE中有两种相似度的定义方法。

如下图:

在这里插入图片描述

图中的边可以是有向的也可以是无向的,或者是带权边。顶点6和顶点7之间的边权重较重,他们在低维空间内的表示向量应该是相似的。但当两个顶点之间不存在边时,如顶点5和顶点6,并不能说二者之间没有关系,因为顶点5和顶点6具有相同的邻接顶点(顶点1,2,3,4)。这就是LINE的两种相似度的基本思想。

LINE是基于顶点之间的相似度进行建模,第一步将顶点Embedding到指定维度,利用Embedding的表示向量计算顶点A与顶点B之间的相似度,让相似度去拟合顶点A,B 之间的边的权重,得到最优的顶点的嵌入向量

一阶相似度

一阶相似度用于描述图中成对顶点之间的局部相似度,即只有当边与边之间存在连接时,顶点之间才有相似度,相似度与边之间的权重成正比,图中的顶点6,7 权重较大,相似度为1。顶点5和顶点6之间不存在边,相似度为0。

优化目标

假设用 u i , u j u_i,u_j ui,uj作为节点的低维向量表示,对于每一条无向边 ( i , j ) (i,j) (i,j),顶点 u i , u j u_i,u_j ui,uj之间的联合概率密度为:
p 1 ( v i , v j ) = 1 1 + e x p ( − u i T ⋅ u j ) p_1(v_i,v_j) = \frac{1}{1+exp(-u_i^T \cdot u_j)} p1(vi,vj)=1+exp(uiTuj)1
若两个向量相似,则 p ( v i , v j ) p(v_i,v_j) p(vi,vj)也较大。

同时,两节点之间的经验概率如下:
p ^ 1 ( i , j ) = w i j W W = ∑ ( i , j ) ∈ E w i j \hat p_1(i,j) = \frac{w_{ij}}{W} \\ W = \sum_{(i,j) \in E} w_{ij} p^1(i,j)=WwijW=(i,j)Ewi

### 嵌入(Embedding)的实际应用案例与实现方法 嵌入技术是一种将离散数据转换为连续向量空间表示的方法,在自然语言处理、推荐系统以及网络等领域具有广泛应用。以下是几个具体的实际应用场景及其对应的代码示例。 #### 1. 自然语言处理中的词嵌入 (Word Embedding) 在自然语言处理领域,词嵌入是最常见的嵌入形式之一。它通过学习单词之间的关系来生成低维稠密向量表示。以下是一个基于 TensorFlow 和 Keras 的简单 Word Embedding 实现: ```python import tensorflow as tf from tensorflow.keras.layers import Embedding, Flatten, Dense from tensorflow.keras.models import Sequential vocab_size = 10000 # 单词表大小 embedding_dim = 16 # 嵌入维度 model = Sequential([ Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=10), Flatten(), Dense(units=1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) print(model.summary()) ``` 上述代码展示了如何构建一个简单的神经网络模型[^1],其中 `Embedding` 层用于将输入的整数序列映射到密集向量空间中。 --- #### 2. 图嵌入 (Graph Embedding) 中的应用 对于结构的数据,可以通过 Graph Embedding 技术将其节点或边转化为向量表示。以下是一个基于 LINE 算法的简单 Java 随机游走实现片段[^2]: ```java public class RandomWalk { private int numNodes; private double[][] adjacencyMatrix; public RandomWalk(int numNodes, double[][] adjacencyMatrix) { this.numNodes = numNodes; this.adjacencyMatrix = adjacencyMatrix; } public List<Integer> performRandomWalk(int startNode, int walkLength) { List<Integer> walkSequence = new ArrayList<>(); int currentNode = startNode; for (int step = 0; step < walkLength; step++) { walkSequence.add(currentNode); double[] neighbors = adjacencyMatrix[currentNode]; double sumWeights = Arrays.stream(neighbors).sum(); // 计算概率分布并采样下一个节点 double randomValue = Math.random() * sumWeights; double cumulativeWeight = 0.0; for (int neighbor = 0; neighbor < numNodes; neighbor++) { cumulativeWeight += neighbors[neighbor]; if (randomValue <= cumulativeWeight && neighbors[neighbor] != 0) { currentNode = neighbor; break; } } } return walkSequence; } } ``` 此代码实现了随机游走的核心逻辑,可用于后续训练节点嵌入向量。 --- #### 3. 推荐系统的用户/物品嵌入 在推荐系统中,可以利用嵌入层分别对用户和物品进行编码,从而捕捉它们之间的潜在关联。以下是一个简化版的协同过滤模型实现: ```python import numpy as np from keras.layers import Input, Dot, Activation from keras.models import Model num_users = 1000 # 用户数量 num_items = 500 # 物品数量 embedding_size = 32 # 嵌入维度 # 定义用户和物品的嵌入层 user_input = Input(shape=(1,)) item_input = Input(shape=(1,)) user_embedding = Embedding(output_dim=embedding_size, input_dim=num_users, input_length=1)(user_input) item_embedding = Embedding(output_dim=embedding_size, input_dim=num_items, input_length=1)(item_input) # 将两个嵌入向量相乘得到预测评分 dot_product = Dot(axes=-1)([user_embedding, item_embedding]) output_layer = Activation('sigmoid')(dot_product) recommendation_model = Model(inputs=[user_input, item_input], outputs=output_layer) recommendation_model.compile(loss='mse', optimizer='adam') print(recommendation_model.summary()) ``` 这段代码定义了一个基本的矩阵分解模型,能够有效捕获用户-物品交互模式。 --- #### 总结 以上三个场景涵盖了嵌入技术的主要用途:从文本分析到复杂网络建模再到个性化推荐服务。这些例子不仅体现了嵌入的强大表达能力,还提供了可操作性强的技术实践路径[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值