自然语言处理NLP之语义相似度、语言模型、doc2vec

本文探讨自然语言处理中的语义相似度计算,介绍Sentence-Similarity和Siamese network的概念,并举例说明。接着讲解语言模型LM的重要性,如在机器翻译、拼写检查等场景的应用。最后,详细阐述doc2vec模型,它是word2vec的扩展,能处理不同长度的文本,适用于文本聚类和分类任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自然语言处理NLP之语义相似度、语言模型、doc2vec

目录

自然语言处理NLP之语义相似度、语言模型、doc2vec

语义相似度

语言模型(Language Model, LM)

doc2vec


语义相似度

Sentence-Similarity,问题句子相似度计算,即给定客服里用户描述的两句话,用算法来判断是否表示了相同的语义 Siamese network就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的。因为权值都一样。对于siamese

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值