文本情感分类(四)

文本情感分类面临优化目标与考核指标不一致的问题。虽然交叉熵损失函数用于训练模型,但最终评估的是准确率而非交叉熵大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文本情感分类其实是一个二分类的问题,事实上,对于分类模型,都会存在这样一个毛病,优化目标跟考核指标不一致。通常来说,对于分类,我们都会采用交叉熵作为损失函数,他的来源就是最大似然估计,但是,我们最后的评估目标,并非要看交叉熵有多小,而是看模型的准确率,一般来说,交叉熵很小,准确率也会很高,但是这个关系并非必然的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值