在训练yolov8是总是出错,ValueError: not enough values to unpack (expected 3, got 0)

博主在YOLO训练时遇到报错,起初认为是数据集标签小数点位数问题,统一后仍报错。后发现脚本找不到图片路径,原使用相对路径,重新生成绝对路径后,运行train文件不再报错,解决了ValueError问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 在网上查了很多资料,大部分人说是数据集的标签有问题。有的说是标签的数据的小数点位数不一样导致的。然后我就将标签的数据小数点位数统一了一下。

结果还是报错

一直没搞懂,这个错误的原因。最开始一直盯着ValueError: not enough values to unpack (expected 3, got 0)改。一直报错。

后来我开始想为什么我总端输入命令可以训练。但是我自己写的脚本一直报错。后来就针对它为什么找不到这个图片路径。

train: WARNING ⚠️ mydatas/images/IMG20231223152215_z9.jpg: ignoring corrupt image/label: [Errno 2] No such file or directory: 'mydatas/images/IMG20231223152215_z9.jpg'可以看到这个是相对路径,然后我就想着重新生成,生成绝对路径。

import xml.etree.ElementTree as ET
import pickle
import numpy as np
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test', 'val']
classes =  ['craze','white mark','joint line', 'bump', 'off-centered']
def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    x = format(x, '.6f')
    w = w * dw
    w = format(w, '.6f')
    y = y * dh
    y = format(y, '.6f')
    h = h * dh
    h = format(h, '.6f')
    return (x, y, w, h)
def convert_annotation(image_id):
    in_file = open('/home/gzz/zhoulin/model-sound code/yolov8/mydatas/Annotations/%s.xml' % (image_id),encoding='utf-8')
    out_file = open('/home/gzz/zhoulin/model-sound code/yolov8/mydatas/labels/%s.txt' % (image_id), 'w',encoding='utf-8')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
    if not os.path.exists('/home/gzz/zhoulin/model-sound code/yolov8/mydatas/labels/'):
        os.makedirs('/home/gzz/zhoulin/model-sound code/yolov8/mydatas/labels/')
    image_ids = open('/home/gzz/zhoulin/model-sound code/yolov8/mydatas/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('/home/gzz/zhoulin/model-sound code/yolov8/mydatas/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write('/home/gzz/zhoulin/model-sound code/yolov8/mydatas/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

这个是我的标签生成代码。可以看到都改成了绝对路径。

然后在运行train文件

#coding:utf-8
# 替换主干网络,训练
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('yolov8_qinglianghua.yaml')
    #model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='111.yaml', epochs=400, batch=8)

可以看到它不报错了,ValueError: not enough values to unpack (expected 3, got 0)这个问题也解决了。

<think>嗯,用户在训练YOLOv8时遇到了ValueError,错误信息是“not enough values to unpack (expected 3, got 0)”。首先,我需要理解这个错误的原因。通常,这种错误发生在尝试解包值时,预期的变量数量与实际提供的数量不匹配。在这种情况下,预期3个值,但得到了0个,说明某个函数或方法返回了一个空值,而代码试图将其解包为三个变量。 接下来,我应该考虑可能触发这种情况的常见原因。根据经验,可能有以下几个原因: 1. **数据加载问题**:YOLOv8需要正确格式的数据集,特别是数据集配置文件(如data.yaml)的路径是否正确,文件内容是否正确,比如训练、验证、测试的路径是否正确设置,类别标签是否正确定义。如果路径错误或文件内容有误,可能导致数据加载失败,返回空值。 2. **文件路径错误**:在data.yaml中指定的图像或标签路径可能不存在,或者路径格式不正确。例如,在Windows中使用反斜杠时可能需要转义,或者路径中有空格未用引号包裹。 3. **图像文件损坏或格式问题**:某些图像文件可能损坏,或者格式不被OpenCV等库支持,导致读取失败,从而引发错误。 4. **YOLO版本问题**:用户可能使用了不兼容的Ultralytics YOLO版本,或者代码与当前版本存在差异,导致某些函数的行为变化。 接下来,我需要逐步分析每个可能的原因,并提供相应的解决方案。首先检查数据集配置是否正确,确保data.yaml中的路径有效,并且文件结构符合YOLOv8的要求。然后检查图像和标签文件是否存在,路径是否正确。接着,验证图像文件是否损坏,是否有权限问题。此外,检查使用的YOLO版本,可能需要升级或降级版本以解决兼容性问题。 另外,用户可能需要检查数据加载部分的代码,是否有自定义的数据加载方法,或者是否正确调用了YOLO训练函数。例如,在使用model.train()时,参数是否正确传递,特别是数据配置文件的路径是否正确。 最后,建议用户逐步调试,例如使用try-except块捕获异常,打印中间变量,查看具体在哪一步出现了空值返回,从而更精确地定位问题所在。</think>在训练YOLOv8时遇到`ValueError: not enough values to unpack (expected 3, got 0)`错误,通常与数据集加载或配置文件相关。以下是分步解决方案: ### 1. 检查数据集配置文件 确保`data.yaml`文件中路径格式正确: ```yaml train: ../datasets/train/images val: ../datasets/valid/images test: ../datasets/test/images # 可选 nc: 80 # 类别数 names: ["person", "car", ...] # 类别标签 ``` - 使用`/`代替`\`避免转义问题 - 路径需指向包含图像的文件夹(而非标签文件夹) - 验证路径是否真实存在(建议使用绝对路径) ### 2. 验证文件结构 YOLOv8要求的标准结构: ``` datasets/ ├── train/ │ ├── images/ │ └── labels/ ├── valid/ │ ├── images/ │ └── labels/ └── data.yaml ``` 需确保: - 每个图像有对应的`.txt`标签文件 - 标签文件与图像文件名严格一致(如`image001.jpg`对应`image001.txt`) - 标签格式为归一化坐标:`class x_center y_center width height` ### 3. 检查图像文件有效性 使用以下脚本检测损坏文件: ```python from ultralytics.yolo.utils import ops ops.check_dataset(&#39;path/to/data.yaml&#39;) ``` 若发现错误文件,可运行: ```bash find datasets/ -name "*.jpg" | xargs identify | grep -v "RGB\|GRAY" ``` 删除无法识别的图像文件[^1]。 ### 4. 更新YOLO版本 ```bash pip install ultralytics --upgrade ``` 或指定版本: ```bash pip install ultralytics==8.0.169 ``` ### 5. 最小化测试 创建最小测试数据集(含1-2个样本),验证是否能复现错误: ```python from ultralytics import YOLO model = YOLO(&#39;yolov8n.yaml&#39;).load(&#39;yolov8n.pt&#39;) results = model.train(data=&#39;debug_data.yaml&#39;, epochs=1, imgsz=640) ``` ### 典型错误场景示例 错误写法: ```python # 错误:直接传递数据集路径而非配置文件路径 model.train(data="/datasets/images") ``` 正确写法: ```python model.train(data="path/to/data.yaml") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值