poj-3667–hotel
整体来说思路不难想,就是细节比较多,处理复杂,容易出错
题意:给出长为n的空间大小,支持两种操作
1.给定长度len,尽可能填补靠左边的空间,并输出填补的起始位置
2.给定起始位置pos,以及长度len,将以pos为起始长度为len的空间清空
思路:
变量记录:
维护三颗线段树,seg_left[root]表示结点root对应的区间[l,r]上,从左端点l起始的空闲空间长度,seg_right[root]表示结点root对应的区间[l,r]上,从右端点r起始的空闲空间长度,seg_tree[root]表示结点root对应的区间[l,r]上,对应的最大的连续空闲长度。
lazy[root]表示结点root对应的区间[l,r]上,对应的懒标记,这里需要注意的点是,有三种状态,值为2时表示root结点下的子树都为被占状态,值为1时表示root结点下的子树都为空闲状态,两种后来的可以覆盖前面的,值为0表示没有进行标记。
细节处理方面比较多:
1.push_up向上回溯的处理
2.query查询时的处理,先查左子树,再查左子树加上右子树,最后查右子树
3.lazy tag的部分,push_down向下push比较简单,就是将三颗树的值都置为lazy的值就可以。
//#include <bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define int long long
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
const int N = 2e5+10;
int n;
int arr[N],seg_tree[N<<2],lazy[N<<2],seg_left[N<<2],seg_right[N<<2];
void push_up(int root,int L,int R)
{
seg_tree[root]=seg_right[root<<1]+seg_left[root<<1|1];
seg_tree[root]=max(seg_tree[root],max(seg_tree[root<<1],seg_tree[root<<1|1]));
int mid=L+R>>1;
if(seg_left[root<<1]==mid-L+1)
seg_left[root]=seg_left[root<<1]+seg_left[root<<1|1];
else seg_left[root]=seg_left[root<<1];
if(seg_right[root<<1|1]==R-mid)
seg_right[root]=seg_right[root<<1]+seg_right[root<<1|1];
else seg_right[root]=seg_right[root<<1|1];
}
void build(int root,int L,int R)
{
if(L==R)
{
seg_tree[root]=1;
seg_left[root]=1;
seg_right[root]=1;
return ;
}
int mid=(L+R)>>1;
build(root<<1,L,mid);
build(root<<1|1,mid+1,R);
push_up(root,L,R);
}
void add(int root,int L,int R,int val)
{
seg_tree[root]=(val-1)*(R-L+1);
seg_left[root]=(val-1)*(R-L+1);
seg_right[root]=(val-1)*(R-L+1);
}
void push_down(int root,int L,int R)
{
if(lazy[root])
{
int mid=L+R>>1;
lazy[root<<1]=lazy[root];
lazy[root<<1|1]=lazy[