【Gemini】最强推理长文本模型Gemini 2.5 Pro 详细介绍 + API KET的使用教程!

Gemini 2.5 Pro 详细介绍

Gemini 2.5 Pro 是谷歌于 2025 年 3 月 26 日发布的一款高性能推理模型,经过数月的优化与测试,已成为支持生产级应用的稳定模型。以下为该模型的详细介绍。

在这里插入图片描述

一、发展历程

  • 2025 年 3 月 26 日:Gemini 2.5 Pro 正式上线。
  • 2025 年 6 月 18 日:谷歌宣布 Gemini 2.5 Pro 系列进入稳定阶段,已通过大规模测试,可稳定支持生产级应用开发。

二、功能特点

1. 超大上下文窗口

  • 支持 100 万 tokens 的上下文窗口,能够处理约 2000 页文本内容。
  • 未来计划推出 200 万 tokens 的上下文窗口,进一步提升长文本处理能力。
  • 适用于分析完整代码库、处理长篇文档、保持长时对话等复杂场景。

2. 强大的推理能力

  • 不仅支持分类和预测,还能进行系统分析、逻辑推理、上下文融合和细微差别理解,做出明智决策。
  • 在大模型竞技场 Chatbot Arena 中,以 1443 分 的成绩排名第一,表现卓越。

3. 多模态处理能力

  • 支持文本、音频、图像、视频,甚至完整代码仓库的多模态输入。
  • 是目前功能最强大的多模态 AI 模型之一,能够处理来自多种信息源的复杂问题。

4. “思维预算” 功能

  • Gemini 2.5 Pro 0605 版本引入创新机制,允许用户根据需求调节模型的思考深度和响应速度。
  • 提供多种模式:快速模式、深度模式、平衡模式和自适应调节模式,灵活满足不同场景需求。

5. 代码能力突出

  • 在代码编辑、重构、系统架构设计及跨语言编程协助方面表现卓越。
  • 用户只需简单指令,如“创建一个 Three.js 飞行模拟器”,即可自动生成完整可执行代码。

6. 事实性准确度高

  • 在 FACTS Grounding(事实性基础)测试中,Gemini 2.5 Pro 0605 版本领先第二名超过 10 个百分点,信息准确性处于绝对优势。

在这里插入图片描述

三、性能表现

  • 数学与科学推理:在 GP QA Diamond 测试中取得 84% 成绩;在 AIME 2025 测试中取得 86.7% 成绩。
  • 智能体编程评估:在 SWE-bench verified 基准中,采用定制智能体配置取得 63.8% 得分,超越 OpenAI 的 o3-mini 和 DeepSeek 的 R1 等模型。
  • 综合能力测试:在代号“nebula”的测试中,Gemini 2.5 Pro 夺得第一名,并独揽数学、创意写作、指令遵循、长查询和多轮对话五大领域冠军。

四、成本优势

  • 定价极具市场竞争力,成本仅为 GPT-4o 的 1/8,不到 Claude 4 Opus 的 1/10,为 Grok 3 的 1/2
  • 输出成本远低于竞品,大幅降低了大规模应用的成本门槛,适合企业和开发者大规模集成使用。

Gemini 2.5 Pro 以其超大上下文处理能力、卓越的推理与多模态支持、灵活的“思维预算”机制以及极具竞争力的成本优势,成为当前 AI 推理领域的领先者,助力各类复杂应用场景的智能升级。

在这里插入图片描述

五、什么是 OpenAI Key?

1. 定义与本质

OpenAI Key(又称 “OpenAI API Key”),是 OpenAI 为开发者提供的身份认证凭证,本质上是一串由字母、数字和特殊符号组成的唯一字符串(例如:sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)。

当开发者通过 OpenAI API 调用模型服务时,需要在请求中携带这串 Key,OpenAI 服务器通过验证 Key 的有效性,来确认开发者的身份、判断其是否拥有调用权限,并统计 API 的使用量(用于计费)。简单来说,OpenAI Key 就像是开发者访问 OpenAI 模型能力的“钥匙”,没有 Key 则无法通过 API 使用 OpenAI 的技术服务。
在这里插入图片描述

2. OpenAI Key 的核心作用

  • 身份验证
    OpenAI 通过 Key 识别开发者身份,确保只有注册并获得授权的用户才能调用 API,防止未授权访问与滥用。

  • 权限控制
    不同类型的 Key 对应不同的权限,例如:免费账号的 Key 有调用次数、模型类型限制(如无法调用 GPT-4);付费账号的 Key 可解锁更多模型、更高调用额度,且支持自定义 API 参数(如上下文窗口长度、响应速度)。

  • 用量统计与计费
    OpenAI 根据 Key 的调用记录统计开发者使用 API 的次数(按 “token” 计费,token 是模型处理文本的基本单位,1 个 token 约等于 0.75 个英文单词或 2 个中文字符),并根据用量从开发者绑定的支付方式中扣费(免费账号通常有初始额度,如 5 美元,用完后需升级付费)。

  • 资源管理
    开发者可创建多个 Key,为不同的项目、应用分配独立的 Key,便于区分不同场景的 API 使用情况,也能在某个 Key 泄露时快速删除,避免影响其他项目。


3.OpenAI API Key的使用场景

  1. 自动化集成:将OpenAI的文本生成能力集成到现有应用、网站或服务中,实现流程自动化。
  2. 专属大模型应用:利用API Key创建个性化的AI应用,如智能客服、内容推荐系统等。
  3. 数据分析与处理:通过API调用进行自然语言处理,提升数据分析的智能化水平。

无论你身处哪个领域,掌握API Key的获取与使用,都能为你的项目增添无限可能。


通过“OpenAI官网”获取API Key(国外)

1、访问OpenAI官网

在浏览器中输入OpenAI官网的地址,进入官方网站主页。
https://www.openai.com

  • 点击右上角的“Sign Up”进行注册,或选择“Login”登录已有账户。
  • 完成相关的账户信息填写和验证,确保账户的安全性。

登录后,导航至“API Keys”部分,通常位于用户中心或设置页面中。

2、生成API Key

  • 在API Keys页面,点击“Create new key”按钮。
  • 按照提示完成API Key的创建过程,并将生成的Key妥善保存在安全的地方,避免泄露。🔒

生成API Key

3、使用 OpenAI API代码

现在你已经拥有了 API Key 并完成了充值,接下来是如何在你的项目中使用 GPT-4.0 API。以下是一个简单的 Python 示例,展示如何调用 API 生成文本:

import openai
import os

# 设置 API Key
openai.api_key = os.getenv("OPENAI_API_KEY")

# 调用 GPT-4.0 API
response = openai.Completion.create(
    model="gpt-4.0-turbo",
    prompt="鲁迅与周树人的关系。",
    max_tokens=100
)

# 打印响应内容
print(response.choices[0].text.strip())

通过“能用AI”获取API Key(国内)

针对国内用户,由于部分海外服务访问限制,可以通过国内平台“能用AI”获取API Key。

1、访问能用AI工具

在浏览器中打开能用AI进入主页
https://ai.nengyongai.cn/register?aff=PEeJ

登录后,导航至API管理页面。
在这里插入图片描述

2、生成API Key

  1. 点击“添加令牌”按钮。
  2. 创建成功后,点击“查看KEY”按钮,获取你的API Key。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


###/3、使用OpenAI API的实战教程

拥有了API Key后,接下来就是如何在你的项目中调用OpenAI API了。以下以Python为例,详细展示如何进行调用。

(1).可以调用的模型
gpt-3.5-turbo
gpt-3.5-turbo-1106
gpt-3.5-turbo-0125
gpt-3.5-16K
gpt-4
gpt-4-1106-preview
gpt-4-0125-preview
gpt-4-1106-vision-preview
gpt-4-turbo-2024-04-09
gpt-4o-2024-05-13
gpt-4-32K
claude-2
claude-3-opus-20240229
claude-3-sonnet-20240229

在这里插入图片描述

(2).Python示例代码(基础)

基本使用:直接调用,没有设置系统提示词的代码


from openai import OpenAI
client = OpenAI(
    api_key="这里是能用AI的api_key",
    base_url="https://ai.nengyongai.cn/v1"
)

response = client.chat.completions.create(
    messages=[
    	# 把用户提示词传进来content
        {'role': 'user', 'content': "鲁迅为什么打周树人?"},
    ],
    model='gpt-4',  # 上面写了可以调用的模型
    stream=True  # 一定要设置True
)

for chunk in response:
    print(chunk.choices[0].delta.content, end="", flush=True)
在这里插入代码片
(3).Python示例代码(高阶)

进阶代码:根据用户反馈的问题,用GPT进行问题分类

from openai import OpenAI

# 创建OpenAI客户端
client = OpenAI(
    api_key="your_api_key",  # 你自己创建创建的Key
    base_url="https://ai.nengyongai.cn/v1"
)

def api(content):
    print()
    
    # 这里是系统提示词
    sysContent = f"请对下面的内容进行分类,并且描述出对应分类的理由。你只需要根据用户的内容输出下面几种类型:bug类型,用户体验问题,用户吐槽." \
                 f"输出格式:[类型]-[问题:{content}]-[分析的理由]"
    response = client.chat.completions.create(
        messages=[
            # 把系统提示词传进来sysContent
            {'role': 'system', 'content': sysContent},
            # 把用户提示词传进来content
            {'role': 'user', 'content': content},
        ],
        # 这是模型
        model='gpt-4',  # 上面写了可以调用的模型
        stream=True
    )

    for chunk in response:
        print(chunk.choices[0].delta.content, end="", flush=True)


if __name__ == '__main__':
    content = "这个页面不太好看"
    api(content)

在这里插入图片描述

通过这段代码,你可以轻松地与OpenAI GPT-4.0模型进行交互,获取所需的文本内容。✨


更多文章

【IDER、PyCharm】免费AI编程工具完整教程:ChatGPT Free - Support Key call AI GPT-o1 Claude3.5

【VScode】VSCode中的智能编程利器,全面揭秘ChatMoss & ChatGPT中文版

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XinZong-千鑫

在线乞讨,行行好吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值