自然语言处理之话题建模:Latent Dirichlet Allocation(LDA)模型原理
自然语言处理之话题建模:Latent Dirichlet Allocation (LDA)
一、引言
1.1 话题建模简介
话题建模是一种统计建模方法,用于发现文档集合或语料库中隐藏的主题结构。它假设文档由多个话题组成,每个话题由一组相关的词汇构成。通过分析文档中的词汇分布,话题建模可以揭示出文档集中的潜在话题,从而帮助理解和分类大量文本数据。
1.2 LDA模型的历史与应用
Latent Dirichlet Allocation (LDA) 是由David Blei、Andrew Ng和Michael Jordan在2003年提出的。LDA是一种基于概率的生成模型,它假设文档是通过一个混合的话题分布生成的,而每个话题又通过一个混合的词汇分布生成。LDA模型在文本挖掘、信息检索、自然语言处理等领域有着广泛的应用,例如用于文档分类、信息过滤、自动文摘和语义分析等。