自然语言处理之话题建模:Latent Dirichlet Allocation(LDA)模型原理

自然语言处理之话题建模:Latent Dirichlet Allocation(LDA)模型原理

在这里插入图片描述

自然语言处理之话题建模:Latent Dirichlet Allocation (LDA)

一、引言

1.1 话题建模简介

话题建模是一种统计建模方法,用于发现文档集合或语料库中隐藏的主题结构。它假设文档由多个话题组成,每个话题由一组相关的词汇构成。通过分析文档中的词汇分布,话题建模可以揭示出文档集中的潜在话题,从而帮助理解和分类大量文本数据。

1.2 LDA模型的历史与应用

Latent Dirichlet Allocation (LDA) 是由David Blei、Andrew Ng和Michael Jordan在2003年提出的。LDA是一种基于概率的生成模型,它假设文档是通过一个混合的话题分布生成的,而每个话题又通过一个混合的词汇分布生成。LDA模型在文本挖掘、信息检索、自然语言处理等领域有着广泛的应用,例如用于文档分类、信息过滤、自动文摘和语义分析等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值