python提取特定时间段内的数据

本文演示了如何使用Python的Pandas库筛选特定时间范围内的数据,通过将时间字符串转换为datetime对象,并利用布尔条件进行筛选,展示了精确的数据筛选过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 尝试一下:

data['Date'] = pd.to_datetime(data['Date'])
data = data[(data['Date'] >=pd.to_datetime('20120701')) & (data['Date'] <= pd.to_datetime('20120831'))]

 

实际测试

'''
Created on 2019年1月3日

@author: hcl
'''
import pandas as pd
import matplotlib.pyplot as plt

data_path = 'one_20axyz.csv'
if __name__ == '__main__':  
    msg = pd.read_csv(data_path)
#     ID_set = set(msg['Time'].tolist())
#     ID_list = list(ID_set)
#     print(len(msg['Time'].tolist()),len(ID_list),len(msg['Time'].tolist())/len(ID_list))#打印数据量    多少秒   平均每秒多少个
#     print(msg.head(10))
#     left_a = msg[msg['leg'] == 1]['az']
#     right_a = msg[msg['leg'] == 2]['az']
#     plt.plot(left_a,label = 'left_a')
#     plt.plot(right_a,label = 'right_a')
#     plt.legend(loc = 'best')
#     plt.show()
    left_msg =  msg[msg['leg'] == 1] #DataFrame
    data = left_msg[(pd.to_datetime(left_msg['Time'] ,format = '%H:%M:%S')>= pd.to_datetime('16:23:42',format = '%H:%M:%S')) & (pd.to_datetime(left_msg['Time'] ,format = '%H:%M:%S') <= pd.to_datetime('16:23:52',format = '%H:%M:%S'))]
#     print(msg.head())
    print(data)
    

输出:

         Time  ID  leg      ax      ay      az         a  Rssi
1    16:23:42   5    1  0.6855 -0.6915  0.1120  0.980116   -34
3    16:23:42   5    1  0.6800 -0.6440  0.1365  0.946450   -31
5    16:23:42   5    1  0.7145 -0.7240  0.1095  1.023072   -34
7    16:23:42   5    1  0.7050 -0.6910  0.1080  0.993061   -30
9    16:23:42   5    1  0.7120 -0.6400  0.0920  0.961773   -31
10   16:23:42   5    1  0.7150 -0.6810  0.1290  0.995805   -34
12   16:23:42   5    1  0.7250 -0.6655  0.1890  1.002116   -32
13   16:23:42   5    1  0.7160 -0.7065  0.1000  1.010840   -31
15   16:23:42   5    1  0.7545 -0.6990  0.1715  1.042729   -30
17   16:23:42   5    1  0.7250 -0.6910  0.1325  1.010278   -31
19   16:23:42   5    1  0.7520 -0.7260  0.1820  1.060992   -33
21   16:23:42   5    1  0.7005 -0.7150  0.0605  1.002789   -33
23   16:23:42   5    1  0.7185 -0.6630  0.1430  0.988059   -30
25   16:23:42   5    1  0.7170 -0.7040  0.0920  1.009044   -34
27   16:23:42   5    1  0.7230 -0.6810  0.1060  0.998862   -31
29   16:23:42   5    1  0.7230 -0.6720  0.0940  0.991539   -31
31   16:23:42   5    1  0.6955 -0.6975  0.0720  0.987629   -33
32   16:23:42   5    1  0.7430 -0.6895  0.1495  1.024602   -34
34   16:23:43   5    1  0.7360 -0.6855  0.1200  1.012920   -32
36   16:23:43   5    1  0.7160 -0.7000  0.1330  1.010121   -30
38   16:23:43   5    1  0.7095 -0.7165  0.1090  1.014221   -31
40   16:23:43   5    1  0.7195 -0.6895  0.1270  1.004599   -34
44   16:23:43   5    1  0.7315 -0.6855  0.1000  1.007473   -34
46   16:23:43   5    1  0.7240 -0.7020  0.0960  1.013013   -31
48   16:23:43   5    1  0.7240 -0.7010  0.0970  1.012416   -32
50   16:23:43   5    1  0.7380 -0.6820  0.1480  1.015713   -34
52   16:23:43   5    1  0.7285 -0.6990  0.0990  1.014453   -33
53   16:23:43   5    1  0.7160 -0.7005  0.1630  1.014852   -30
55   16:23:43   5    1  0.7175 -0.6940  0.0735  1.000922   -29
57   16:23:43   5    1  0.7140 -0.7170  0.0960  1.016416   -28
..        ...  ..  ...     ...     ...     ...       ...   ...
285  16:23:51   5    1  0.0550 -1.0205  0.0955  1.026433   -35
287  16:23:51   5    1  0.0670 -1.0175  0.0915  1.023801   -22
289  16:23:51   5    1  0.0595 -1.0090  0.1025  1.015937   -24
291  16:23:51   5    1  0.0605 -0.9970  0.0905  1.002925   -32
293  16:23:51   5    1  0.0650 -1.0185  0.0740  1.023251   -31
295  16:23:51   5    1  0.0595 -0.9915  0.0945  0.997769   -35
298  16:23:51   5    1  0.0420 -1.0105  0.0970  1.016013   -18
300  16:23:51   5    1  0.0545 -1.0440  0.0795  1.048440   -21
302  16:23:51   5    1  0.0460 -0.9915  0.0765  0.995510   -30
304  16:23:51   5    1  0.0650 -1.0100  0.0810  1.015326   -30
306  16:23:51   5    1  0.0530 -1.0240  0.0765  1.028220   -34
308  16:23:51   5    1  0.0490 -1.0060  0.0785  1.010247   -21
310  16:23:52   5    1  0.0490 -1.0155  0.0760  1.019518   -24
312  16:23:52   5    1  0.0370 -0.9870  0.0660  0.989896   -30
313  16:23:52   5    1  0.0400 -1.0185  0.0435  1.020213   -30
314  16:23:52   5    1  0.0450 -1.0070  0.0540  1.009450   -34
316  16:23:52   5    1  0.0420 -0.9800  0.0595  0.982703   -34
318  16:23:52   5    1  0.0400 -1.0000  0.0595  1.002567   -20
320  16:23:52   5    1  0.0355 -1.0025  0.0635  1.005136   -20
322  16:23:52   5    1  0.0430 -0.9940  0.0735  0.997641   -30
324  16:23:52   5    1  0.0480 -1.0135  0.0640  1.016652   -33
326  16:23:52   5    1  0.0440 -1.0035  0.0670  1.006696   -33
328  16:23:52   5    1  0.0455 -1.0090  0.0600  1.011806   -21
330  16:23:52   5    1  0.0420 -1.0005  0.0605  1.003207   -15
332  16:23:52   5    1  0.0510 -1.0165  0.0670  1.019981   -29
334  16:23:52   5    1  0.0300 -1.0040  0.0460  1.005501   -30
336  16:23:52   5    1  0.0370 -1.0130  0.0500  1.014908   -34
338  16:23:52   5    1  0.0500 -1.0010  0.0530  1.003648   -20
341  16:23:52   5    1  0.0400 -0.9630  0.0615  0.965790   -21
343  16:23:52   5    1  0.0365 -1.0295  0.0410  1.030962   -30

[176 rows x 8 columns]

六、有兴趣接电子设计相关小型项目的请加下群,每个项目一般在1000元以内,非诚勿扰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值