你以为AI只会背答案?DeepSeek、豆包查资料的能力,连人类都自叹不如!

揭秘AI查资料能力背后的多脑协作机制

你以为AI只会背答案?DeepSeek、豆包查资料的能力,连人类都自叹不如!

一、AI 不是全能的,但它背后有个“秘密团队”

当你在豆包、DeepSeek、通义、元宝、kimi、文一言等大模型中提出一个问题,比如:

“老板让我做财报,但我连框架都没想好,救命!”
你以为它只是“凭空想象”?其实,背后有一整套“多脑协作”的机制在工作。
我们可以把这整个过程理解为一个 智能问答的三部曲


🎼 第一乐章:记忆大脑(LLM)——它懂很多,但不是无所不知

大模型(豆包、DeepSeek 等)在训练时吸收了大量书籍、网页、代码、论文……
所以,它像是一个“读书读了 10 年的学生”,能够用自然语言理解你的问题,给出“脑海中”的最佳答案。
优点: 回答自然、有逻辑、通顺
局限:只能基于过去训练过的知识,不能回答最新、具体、个性化的问题

❌ “你公司昨天发布的报告内容是什么?”
❌ “我上传的 PDF 中提到的第 3 点是什么意思?”


🔍 第二乐章:搜索大脑(Search)——它连接真实世界

当 LLM 自身的“记忆”不够用,就需要“查资料”!
这时系统会调用网络搜索或企业知识库搜索,就像你去 必应、百度、企业文档中查找相关内容。
示意图:
用户问题 👉 搜索模块 👉 查找相关网页 / 文档 / 报告 👉 提取片段
这些查到的内容不会直接展示,而是喂给大模型,让它帮你“读懂”后给出更准的回答。

✅ “请帮我解读这篇文章的第 5 段含义”
✅ “根据这个合同文件,起诉期是什么时候截止?”
这一步技术的核心就是 RAG:Retrieval-Augmented Generation(检索增强生成)


🧭 第三乐章:向量大脑(Vector)——让搜索像“找感觉”

传统搜索是关键词匹配,找不到“意思接近但词不一样”的内容。
而向量数据库(如 Milvus、FAISS、PGVector)是用“语义”来找东西——
就像你忘了书名,但说出内容,大脑还是能帮你想起来。

用户输入的问题 👉 转换成“语义向量” 👉 去向量库中找“相似的意思” 👉 提供给 LLM 理解
向量技术是让 AI 能“理解你说的意思”,而不是“死磕字面”。


🧠 三者协作:像一个 AI 团队一样回答你

想象一下,一个 AI 团队在你提问后这样分工合作:

  • LLM 理解你的问题和语境,生成自然语言回复
  • Search 去查找相关知识、文档、资料
  • Vector 从语义维度找最接近的内容,哪怕你说法不一致
  • 最后再由 LLM 综合所有信息,给你一个清晰准确的回答
    这一切都发生在几百毫秒内,你看到的只是一个流畅自然的答案。

二、一图解释:LLM 是怎么找到答案的?

在这里插入图片描述


三、智能问答 = 语言 + 搜索 + 向量 + 推理

在这里插入图片描述
读到这里,想必你已经知道了这些 AI 的工作原理,如果想更深入一步了解我在文章中提到的关于 VectorRAG:检索增强生成的技术**,**可以参阅上一篇文章:数据库的进化三部曲:SQL、NoSQL 与 Vector 如何驱动智能问答?


💬 重点提醒 :喜欢请加关注哦 !
📣 更多原创内容、技术干货,欢迎关注微信公众号 「键上江湖」,与你一键相逢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

derek2026

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值