文章目录
一、基数排序概述
基数排序(radix sort)属于 “分配式排序”(distribution sort),又称 “桶子法”(bucket sort)。基数排序的基本思想是:通过待排序元素的各个位的值,将待排序元素分配至某些 “桶” 中,达到排序的效果。
基数排序是桶排序的扩展,基数排序法是效率高的稳定性排序法。
基数排序算法是经典的空间换时间的方式,占用内存很大,当对海量数据排序时,容易出现内存不足。
二、基数排序的步骤
基数排序过程一般遵循下面的基本步骤:
- 首先确定待排序序列
arr
中最大的元素,得出元素的位数 N,位数 N 决定了基数排序需要进行 N 轮; - 附设一个二维数组
bucket
作为桶(如bucket[m][n]
表示第 m 个桶的第 n 个元素)。由于一位数有 10 种可能(0~9
),因此需要10 个桶;又因为arr
中可能所有元素某一位完全相同即都在一个桶中,因此每个桶最小存储能力要等于arr.length
。故bucket
需要初始化为new int[10][arr.length]
; - 由于需要对每个桶多次存取数据,因此还需附设一个一维数组
bucketCount
作为每个桶的计数器(如bucketCount[2]
的值代表着第三个桶当前的计数值); - 第一轮开始,遍历待排序序列
arr
,求得每个元素的个位数,然后将元素放入到其个位数对应的桶中。元素放置完毕之后,再从桶中按照次序读取数据覆盖到arr
; - 第二轮开始,首先清空桶中的元素,然后遍历最新的
arr
,求得每个元素的十位数,然后将元素放入到其十位数对应的桶中。元素放置完毕后,再从桶中按照次序读取数据覆盖arr
; - 循环执行步骤 5,直到总计执行了 N 轮,然后从桶中读出数据到
arr
中,此时arr
中便是最终排序结果。
上面的步骤可能直接读起来让人有些难以理解,下面将举个例子搭配图片演示一下排序过程。
【举例说明】
已知有如下序列,将它们按照从小到大进行基数排序:
arr = {
53,3,542,748}
首先可以看到,这个序列中最大的元素位数为 3,所以此序列的基数排序需要进行 3 轮,所以我们分 3 轮来讲解。
-
第一轮基数排序
根据桶排序的规则,序列第一个数为 53,也就是个位数为 3,因此将 53 存在索引为 3 的桶中。
继续往后遍历,再根据桶排序的规则,可以确定 3、542、748 分别存放在索引为 3、2、8 的桶中。
原始数组遍历完毕之后,将桶中的数据按顺序读取出来覆盖原始数组。至此,第一轮桶排序结束。
-
第二轮基数排序
首先要清空桶中的遗留数据。
根据桶排序的规则,第二轮将依据元素的十位数来决定将元素放入到哪个桶中,放置过程如下图所示。
第一轮排序后的新数组遍历完毕之后,将桶中的数据按顺序读取出来覆盖第一轮排序后的数组。至此,第二轮桶排序结束。
-
第三轮基数排序
首先要清空桶中的遗留数据。
根据桶排序的规则,第三轮将依据元素的百位数来决定将元素放入到哪个桶中,放置过程如下图所示。
数组入桶完毕之后,将数据从桶中按照次序读出来到数组
arr
中,此时的arr
便是排序完成的结果。至此,第三轮排序完毕,也即整个基数排序完毕。此时arr
中的数据为{3,53,542,748}
。
三、基数排序的代码实现
【案例需求】
假设待排序序列如下:
int[] arr = {
8,4,5,7,1,3,6,2};
要求将上面的序列使用基数排序算法按照从小到大顺序排序。
【思路分析】
其实根据第二部分的示例图解,基数排序的思路我想已经是足够清晰了。
首先我们可以很容易写出对 arr
第一轮基数排序的代码:
int[