引言:AI语言模型的狂飙突进
2017年,Google的一篇论文《Attention Is All You Need》提出了Transformer架构,彻底改变了自然语言处理(NLP)的格局。短短7年,大语言模型(LLM)从千万参数飙升至万亿规模,从简单的文本补全进化为能编程、创作、推理的“准通用AI”。
本文梳理大语言模型的进化历程,对比GPT、BERT、PaLM、Claude、LLaMA等核心模型的技术差异,并展望未来LLM的发展方向。
第一部分:LLM进化史——从统计模型到通用智能
1. 史前时代(2010s早期):统计语言模型的局限
- N-gram模型:基于词频统计,无法理解上下文(如“苹果很好吃” vs “苹果发布了iPhone”)。
- Word2Vec(2013):词嵌入(Word Embedding)让机器“理解”词语关联,但仍无法处理长文本。
2. 革命起点(2017):Transformer架构诞生
- Google论文《Attention Is All You Need》提出自注意力机制(Self-Attention),解决了RNN的长距离依赖问题。
- 关键突破:并行计算、上下文感知、可扩展性强。