大语言模型进化史:从GPT-1到GPT-5,技术对比与未来展望

引言:AI语言模型的狂飙突进

2017年,Google的一篇论文《Attention Is All You Need》提出了Transformer架构,彻底改变了自然语言处理(NLP)的格局。短短7年,大语言模型(LLM)从千万参数飙升至万亿规模,从简单的文本补全进化为能编程、创作、推理的“准通用AI”。

本文梳理大语言模型的进化历程,对比GPT、BERT、PaLM、Claude、LLaMA等核心模型的技术差异,并展望未来LLM的发展方向。


第一部分:LLM进化史——从统计模型到通用智能

1. 史前时代(2010s早期):统计语言模型的局限

  • N-gram模型:基于词频统计,无法理解上下文(如“苹果很好吃” vs “苹果发布了iPhone”)。
  • Word2Vec(2013):词嵌入(Word Embedding)让机器“理解”词语关联,但仍无法处理长文本。

2. 革命起点(2017):Transformer架构诞生

  • Google论文《Attention Is All You Need》提出自注意力机制(Self-Attention),解决了RNN的长距离依赖问题。
  • 关键突破:并行计算、上下文感知、可扩展性强。

3. 第一代LLM(2018-2019):GPT-1与BERT开启新时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhuzhi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值