Hive 的 UDF 函数(Python 版本)

文章介绍了Hive中用户自定义函数(UDF)的概念,包括UDF、UDAF和UDTF的类型和特点,并通过Python实现的示例,展示了如何处理输入数据和输出结果。案例包括将字母转大写、身份证解析以及统计学生成绩等,展示了Python在Hive中的数据处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hive 的 UDF 函数(Python 版本)

一、UDF 是什么

Hive 中支持很多的函数,可以极大的方便我们的工作。但是系统内置的函数虽然很多,却不能满足我们所有的需求。在遇到一些个性化需求的时候,系统内置的函数无法满足,此时就需要使用代码来完成自己的业务逻辑。

UDF: User Defined Function,字面来理解就是用户自定义的函数。其实展开来说,很多系统内置的函数也属于是 UDF 函数。UDF 函数的最大特点是“一对一”。即:一行输入、一行输出。例如,month 函数可以获取到一个日期中的月份。如果我们使用 month(birthday) 就可以获取到一个生日字段中的月份。一行数据中的生日的数据,带入到 month 函数中,就可以得到一行的月份信息。

UDAF: User Defined Aggregation Function,字面来理解就是用户自定义的聚合函数。其实展开来说,常见的聚合函数也属数据 UDAF 函数的。例如 sum, count, max, min, avg,这些函数是作用于某一列的多行数据的。接受多行数据的输入,输出一行的聚合结果。

UDTF: User Defined Table Generate Function,字面来理解就是用户自定义的表生成函数。这种函数可以接受一行的输入数据,输出多行的结果。例如 Hive 中的 explode 就是这样的函数,可以接受一个数组或者字典的数据,将其中的数据展开成多行。

二、UDF 函数的实现

Hive 本身是用 Java 语言来编写的,提供的 UDF 函数的接口也是 Java 的编程接口。但是 Hive 也同时提供了对 Python 的支持,使得可以使用 Python 的语言来编写自己的 UDF、UDAF、UDTF 的逻辑,并且实现起来比 Java 的更加简单!

本文只是记录 UDF 函数的 Python 实现版本!

Python 实现的 UDF、UDAF、UDTF 函数,需要对输入的一整行的数据进行处理,而并不是针对某一个字段进行处理!

  • 读取每一行的输入:可以使用 Python 中的标准输入流来读取。需要注意的是,无论 Hive 的表中是以什么样的字符进行分隔的,这里读取到的字段之间始终是以 \t 进行分隔的!因此我们也必须要使用 \t 进行字段的切割。
  • 输出一行的数据:在将一整行的数据处理完成之后,如果需要输出的时候,直接使用 print 函数打印即可。与输入的一样,输出的不同的字段之间也必须要使用 \t 进行分隔!
  • UDAF 函数实现、UDTF 函数实现:如果实现 UDAF、UDTF 这种输入行和输出行不一致的情况,直接控制 print 函数的输出次数即可。一次的 print 就会生成一行的数据,因此合理控制 print 函数的调用次数,即可实现 UDAF、UDTF 函数。
三、UDF 函数案例
案例一、将字母转成全部大写

1、准备数据文件

zhangsan,male,19
lisi,female,20
wangwu,male,18
zhaoliu,female,19

2、创建数据表

create table if not exists example_01(
	t_name string,
	t_gender string,
	t_age int
)
row format delimited
fields terminated by ',';

3、代码编写

# -*- coding: utf-8 -*-
# @Author   : 大数据章鱼哥
# @Company  : 北京千锋互联科技有限公司

# string_upper.py
import sys

for line in sys.stdin:
    print(line.upper(), end='')

4、应用函数

-- 应用UDF
add file string_upper.py

-- 查询名字,将其转成大写
select transform(t_name) using 'python3 string_upper.py' as (t_name) from example_01;
-- 查询名字、性别,将其转成大写
select transform(t_name, t_gender) using 'python3 string_upper.py' as (t_name, t_gender) from example_01;
案例二、只需要将姓名转成大写

1、数据准备

数据文件和表,沿用案例一即可

2、代码编写

# -*- coding: utf-8 -*-
# @Author   : 大数据章鱼哥
# @Company  : 北京千锋互联科技有限公司

# string_name_upper.py
import sys

for line in sys.stdin:
    # 1. 切割出来每一列
    columns = line.strip().split('\t')
    # 2. 判断切割出来的列的数量,如果数量不正确,这一行数据不处理
    length = len(columns)
	name = columns[0]
<think>嗯,用户之前已经问过自定义UDF函数,现在又问Hive UDF的实现,可能需要更具体的步骤。首先,我要确定用户的需求是什么。可能他们现在在使用Hive,遇到了需要扩展功能的情况,而内置函数不够用。用户可能是一名数据工程师或者数据分析师,需要处理大数据,用Hive进行数据清洗或复杂计算。 接下来,我需要回顾Hive UDF的不同类型,比如普通UDF、UDAF和UDTF,因为用户可能不清楚这些区别。然后,实现步骤是关键,用户需要具体的代码示例和注册方法。用户可能对Java比较熟悉,因为Hive UDF通常用Java编写,但也要提到其他语言的可能性,比如Python,虽然Hive原生支持可能有限。 然后,注意事项部分很重要,比如性能问题、错误处理、版本兼容性。用户可能在开发过程中会遇到性能瓶颈,或者部署时的依赖问题。另外,测试用例也是用户需要的,他们可能想知道如何验证自己的UDF是否正确。 用户可能还有更深的疑问,比如如何优化UDF的性能,或者如何处理复杂数据类型,比如数组或Map。所以,在回答时要涵盖这些高级用法,并给出示例。同时,要提醒用户优先使用内置函数,避免不必要的UDF带来的维护成本。 最后,确保结构清晰,步骤分解明确,代码示例正确,并且符合用户之前提到的格式要求,比如数学公式用$$包裹,代码块用正确语法高亮。还要检查是否所有行内公式都用了$符号,独立公式单独成段,避免格式错误。需要确认是否涵盖了用户可能的痛点,比如部署步骤、依赖管理,以及实际应用场景,帮助用户更好地理解和应用Hive UDF。</think>好的,我将通过具体步骤介绍Hive UDF的实现方法: --- ### **1. Hive UDF基础原理** Hive UDF通过Java类继承特定父类实现,核心处理逻辑发生在`evaluate()`方法中,其执行流程可表示为: $$ \text{输入数据} \xrightarrow{\text{UDF映射}} \text{处理结果} $$ #### **UDF类型对比** | 类型 | 父类 | 功能特点 | |-----------|---------------------|--------------------| | 普通UDF | `UDF` | 一进一出(单行处理) | | 聚合UDF(UDAF)| `UDAF` | 多进一出(分组聚合) | | 表生成UDF(UDTF)| `GenericUDTF` | 一进多出(行转列) | --- ### **2. 标准开发流程** #### **(1) 创建Java类** ```java // 示例:字符串反转UDF package com.hive.udf; import org.apache.hadoop.hive.ql.exec.UDF; import org.apache.hadoop.io.Text; public class ReverseStringUDF extends UDF { public Text evaluate(Text input) { if (input == null) return null; return new Text(new StringBuilder(input.toString()).reverse().toString()); } } ``` #### **(2) 编译打包** ```bash # 需包含Hive依赖(hive-exec.jar) javac -cp /path/to/hive/lib/* ReverseStringUDF.java jar cf udf.jar com/hive/udf/*.class ``` #### **(3) Hive注册** ```sql -- 上传JAR到HDFS(生产环境推荐) ADD JAR /local/path/udf.jar; -- 创建临时函数 CREATE TEMPORARY FUNCTION reverse_udf AS 'com.hive.udf.ReverseStringUDF'; ``` #### **(4) 调用验证** ```sql SELECT reverse_udf('hello'); -- 输出'olleh' ``` --- ### **3. 高级实现技巧** #### **(1) 多参数处理** ```java // 计算两点间距离 public class DistanceUDF extends UDF { public Double evaluate(Double x1, Double y1, Double x2, Double y2) { return Math.sqrt(Math.pow(x2-x1,2) + Math.pow(y2-y1,2)); } } ``` 调用方式:`SELECT distance_udf(116.40,39.90,121.47,31.23)` #### **(2) 复杂类型处理** 处理`ARRAY`类型: ```java public class ArraySumUDF extends UDF { public Double evaluate(List<Double> arr) { return arr.stream().mapToDouble(Double::doubleValue).sum(); } } ``` #### **(3) 优化技巧** - **缓存重用对象**:避免在`evaluate()`中频繁创建对象 - **类型检查**:增加空值处理逻辑 - **使用Writable类型**:正确使用`Text/IntWritable`等Hadoop类型 --- ### **4. 调试与部署** #### **(1) 单元测试** ```java @Test public void testReverseUDF() { ReverseStringUDF udf = new ReverseStringUDF(); assertEquals("cba", udf.evaluate(new Text("abc")).toString()); } ``` #### **(2) 错误排查** - 查看Hive日志:`tail -f /tmp/{user}/hive.log` - 常见错误码: - `SemanticException [Error 10011]: Invalid function` → 类路径错误 - `ClassNotFoundException` → JAR未正确加载 --- ### **5. 实际应用案例** #### **(1) 数据脱敏** ```java // 手机号中间四位脱敏 public String evaluate(String phone) { return phone.replaceAll("(\\d{3})\\d{4}(\\d{4})", "$1****$2"); } ``` #### **(2) JSON解析** ```sql SELECT json_get(info, '$.user.address') FROM log_table; ``` --- ### **6. 注意事项** 1. **性能影响**:UDF会引发MapReduce任务,避免在超大规模数据集逐行调用 2. **版本兼容**:Hive 2.x与3.x的UDF接口存在差异 3. **热部署**:修改UDF后需`RELOAD FUNCTION` 4. **安全限制**:禁止在UDF中执行系统命令 --- **最佳实践建议**: 优先使用Hive内置函数(约300+个),仅在以下场景使用UDF: - 特定业务逻辑(如金融行业计算IRR) - 特殊格式解析(非标准JSON/XML) - 性能敏感型计算(需结合Java本地代码优化)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值