snowflake 算法

SnowFlake算法是一种分布式ID生成方案,由Twitter开源。它通过64位的long型ID,包含时间戳、工作机器ID和序列号,确保ID的全局唯一性和趋势递增性。算法依赖系统时钟,若时钟回拨可能导致问题。适用于高并发场景,如分布式服务中的ID生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

snowflake 算法

  • SnowFlake算法的优点:
  1. 生成ID时不依赖于DB,完全在内存生成,高性能高可用。
  2. ID呈趋势递增,后续插入索引树的时候性能较好。
  • SnowFlake算法的缺点:
  1. 依赖于系统时钟的一致性。如果某台机器的系统时钟回拨,有可能造成ID冲突,或者ID乱序。

snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的,用其中的 41 bits 作为毫秒数,用 10 bits 作为工作机器 id,12 bits 作为序列号。

  • 1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
  • 41 bits:表示的是时间戳,单位是毫秒。41 bits 可以表示的数字多达 2^41 - 1 ,也就是可以标识 2^41 - 1 个毫秒值,换算成年就是表示 69 年的时间。
  • 10 bits:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。但是 10 bits 里 5 个 bits 代表机房 id,5 个 bits 代表机器 id。意思就是最多代表 2^5 个机房(32 个机房),每个机房里可以代表 2^5 个机器(32 台机器)。
  • 12 bits:这个是用来记录同一个毫秒内产生的不同 id,12 bits 可以代表的最大正整数是 2^12 - 1 = 4096 ,也就是说可以用这个 12 bits 代表的数字来区分同一个毫秒内的 4096 个不同的 id。
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
public class IdWorker {

    private long workerId;
    private long datacenterId;
    private long sequence;

    public IdWorker(long workerId, long datacenterId, long sequence) {
        // sanity check for workerId
        // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(
                    String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(
                    String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        System.out.printf(
                "worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    private long twepoch = 1288834974657L;

    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;

    // 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);

    // 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private long sequenceBits = 12L;

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long lastTimestamp = -1L;

    public long getWorkerId() {
        return workerId;
    }

    public long getDatacenterId() {
        return datacenterId;
    }

    public long getTimestamp() {
        return System.currentTimeMillis();
    }

    public synchronized long nextId() {
        // 这儿就是获取当前时间戳,单位是毫秒
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format(
                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 这个意思是说一个毫秒内最多只能有4096个数字
            // 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
        lastTimestamp = timestamp;

        // 这儿就是将时间戳左移,放到 41 bit那儿;
        // 将机房 id左移放到 5 bit那儿;
        // 将机器id左移放到5 bit那儿;将序号放最后12 bit;
        // 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    // ---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1, 1, 1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }

}

怎么说呢,大概这个意思吧,就是说 41 bit 是当前毫秒单位的一个时间戳,就这意思;然后 5 bit 是你传递进来的一个机房 id(但是最大只能是 32 以内),另外 5 bit 是你传递进来的机器 id(但是最大只能是 32 以内),剩下的那个 12 bit 序列号,就是如果跟你上次生成 id 的时间还在一个毫秒内,那么会把顺序给你累加,最多在 4096 个序号以内。

所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是 0。然后每次接收到一个请求,说这个机房的这个机器要生成一个 id,你就找到对应的 Worker 生成。

利用这个 snowflake 算法,你可以开发自己公司的服务,甚至对于机房 id 和机器 id,反正给你预留了 5 bit + 5 bit,你换成别的有业务含义的东西也可以的。

这个 snowflake 算法相对来说还是比较靠谱的,所以你要真是搞分布式 id 生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。

<think>我们正在讨论Snowflake算法的实现和用途。根据引用内容,Snowflake算法是Twitter开源的一种分布式ID生成方案,它生成的是一个64位的整数,通常称为雪花ID。这个ID由时间戳、机器ID(或数据中心ID)和序列号组成。###Snowflake算法原理Snowflake算法的核心思想是将一个64位的整数分成几个部分:1.**符号位(1位)**:始终为0,表示正数。2.**时间戳(41位)**:记录生成ID的时间戳(毫秒级),通常是从一个自定义的起始时间(称为epoch)开始计算的。41位的时间戳可以使用大约69年(因为$2^{41}\approx2.2e12$毫秒,约等于69年)。3.**数据中心ID(5位)**:可以表示最多$2^5=32$个数据中心。4.**机器ID(5位)**:每个数据中心内可以表示最多$2^5=32$台机器。5.**序列号(12位)**:同一机器同一毫秒内生成的序列号,每毫秒可以生成$2^{12}=4096$个唯一ID。因此,整个ID的结构可以用以下方式表示:$$ID=(timestamp\ll22)|(datacenter\_id\ll17)|(worker\_id\ll12)|sequence$$###实现步骤1.**确定起始时间戳(epoch)**:一般设置为系统开始使用的时间,比如`2020-01-0100:00:00`。2.**获取当前时间戳**:计算当前时间与起始时间戳的差值(毫秒)。3.**处理同一毫秒内的并发**:如果同一毫秒内生成多个ID,则递增序列号(序列号范围0~4095)。如果序列号用尽,则等待至下一毫秒。4.**处理时钟回拨**:如果检测到当前时间小于上一次生成ID的时间(即时钟回拨),则需要采取策略,如等待或抛出异常。###代码实现(简化版)以下是一个简化版的Snowflake算法实现(使用Python):```pythonimporttimeclassSnowflake:def__init__(self,datacenter_id,worker_id,epoch=1577836800000):#epoch:2020-01-01self.datacenter_id=datacenter_idself.worker_id=worker_idself.epoch=epochself.sequence=0self.last_timestamp=-1def_current_time(self):returnint(time.time()*1000)-self.epochdefnext_id(self):timestamp=self._current_time()iftimestamp<self.last_timestamp:raiseException("Clockmovedbackwards!")iftimestamp==self.last_timestamp:self.sequence=(self.sequence+1)&0xFFF#12位序列号,最大4095ifself.sequence==0:#当前毫秒序列号用完,等待下一毫秒whiletimestamp<=self.last_timestamp:timestamp=self._current_time()else:self.sequence=0self.last_timestamp=timestamp#组合各部分return(timestamp<<22)|(self.datacenter_id<<17)|(self.worker_id<<12)|self.sequence```###用途Snowflake算法主要用于分布式系统中生成全局唯一的ID,具有以下特点:-**趋势递增**:由于时间戳在高位,生成的ID整体上是递增的,有利于数据库索引。-**高性能**:本地生成,不需要网络开销。-**可排序**:ID按时间顺序生成。-**避免中心化依赖**:不像数据库自增ID或Redis自增那样依赖中心化的服务。###注意事项-**时钟回拨**:由于依赖机器时钟,如果时钟回拨(例如NTP同步导致时间回调),可能导致生成的ID重复。因此需要处理时钟回拨问题(如等待时钟追回或使用备用时钟)。-**机器ID分配**:需要确保数据中心ID和机器ID在分布式系统中是唯一的,通常通过配置中心或环境变量分配。###相关问题§§相关问题§§1.如何解决Snowflake算法中的时钟回拨问题?2.Snowflake算法中的数据中心ID和机器ID如何分配才能保证全局唯一?3.Snowflake算法与其他分布式ID生成算法(如UUID、数据库自增ID)相比有什么优缺点?4.在实际项目中,如何测试Snowflake算法的性能和唯一性?</think>### Snowflake算法详解 #### 算法原理 Snowflake算法是Twitter开源的分布式ID生成方案,核心原理是将64位整数划分为4个部分: $$ID = \underbrace{\text{符号位}}_{1位} \| \underbrace{\text{时间戳}}_{41位} \| \underbrace{\text{数据中心ID}}_{5位} \| \underbrace{\text{机器ID}}_{5位} \| \underbrace{\text{序列号}}_{12位}$$ 1. **时间戳(41位)** 记录生成ID时的毫秒级时间,从自定义起始时间(epoch)计算。最大可表示时间范围: $$T_{max} = \frac{2^{41}}{1000 \times 60 \times 60 \times 24 \times 365} \approx 69年$$ 例如起始时间设为2020-01-01,可用至2089年。 2. **数据中心ID + 机器ID(各5位)** 支持$2^{10}=1024$台机器($2^5 \times 2^5$),需人工配置确保全局唯一。 3. **序列号(12位)** 同一毫秒内的自增序号,每毫秒可生成$2^{12}=4096$个ID。 #### 核心优势 1. **趋势递增**:时间戳高位保证ID有序性,利于数据库索引 2. **高吞吐量**:单机每秒可生成26万ID(理论极限4096/ms) 3. **去中心化**:无需网络请求,本地生成ID 4. **低碰撞率**:通过时间戳+机器ID+序列号三重保障唯一性 #### 关键实现 ```python import time class Snowflake: def __init__(self, datacenter_id, worker_id, epoch=1577836800000): # epoch=2020-01-01 self.datacenter_id = datacenter_id self.worker_id = worker_id self.epoch = epoch self.sequence = 0 self.last_timestamp = -1 def next_id(self): timestamp = self._current_ms() # 时钟回拨处理 if timestamp < self.last_timestamp: raise Exception("Clock moved backwards!") # 同一毫秒内生成 if timestamp == self.last_timestamp: self.sequence = (self.sequence + 1) & 0xFFF # 12位序列号 if self.sequence == 0: # 当前毫秒序列号耗尽 timestamp = self._wait_next_ms(self.last_timestamp) else: self.sequence = 0 self.last_timestamp = timestamp # 组合ID (64位) return ((timestamp - self.epoch) << 22) | \ (self.datacenter_id << 17) | \ (self.worker_id << 12) | \ self.sequence def _current_ms(self): return int(time.time() * 1000) def _wait_next_ms(self, last): current = self._current_ms() while current <= last: current = self._current_ms() return current ``` #### 典型应用场景 1. **分布式数据库主键**:MySQL分库分表时的全局唯一ID 2. **消息队列消息ID**:Kafka/RabbitMQ的消息标识 3. **订单号生成**:电商系统保证订单号全网唯一 4. **日志追踪ID**:微服务架构中的请求链路追踪 #### 时钟回拨问题解决方案 1. **短暂回拨**:等待时钟同步(如NTP服务完成校准) 2. **严重回拨**: - 启用备用ID生成器(如数据库序列) - 扩展时间戳存储位(如百度uid-generator方案) - 记录最后生成时间戳,拒绝服务直到时钟恢复 > 美团Leaf方案对Snowflake改进:将序列号前置为时间差序列,支持更高并发[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值