如何基于 Dify 开发 Agent 智能代理

以下是为小白用户量身定制的、基于 Dify 平台开发 Agent(智能代理)超直观、低门槛、高可行性实现方案


原文

🎯 目标:让“零代码/低代码”小白也能轻松做出一个能“思考 + 执行”的 Agent

✅ 比如:你问它“帮我查明天上海天气,如果下雨就提醒我带伞”,它能自己分析、调用工具、做判断、给出结果。


🧩 一、一句话理解:什么是 Agent?

Agent = 会自己动脑子 + 能干活的小助手

它不像普通聊天机器人只是“回答问题”,而是:

  • 理解你的目标
  • 自己拆解任务步骤
  • 调用工具(如搜索、API)
  • 做出决策
  • 返回最终结果

🛠️ 二、为什么选 Dify?对小白友好吗?

优点对小白的意义
可视化拖拽工作流不用写代码也能搭逻辑
内置大模型能力自动理解语言、生成回复
支持自定义工具能连接外部功能(如天气、数据库)
中文界面 + 国内可用上手无障碍

结论:Dify 是目前最适合小白做 Agent 的国产平台!


🚀 三、小白也能做的 Agent 示例:天气提醒助手

我们来做一个完整的例子,全程可视化操作,无需写一行代码


🌐 第一步:准备环境

  1. 打开 Dify 官网(或私有部署版本)
  2. 注册账号 → 登录
  3. 点击「创建应用」→ 选择「工作流(Workflow)」

💡 提示:一定要选“工作流”模式,这是实现 Agent 的关键!


🧱 第二步:搭建 Agent 的“大脑”——可视化工作流

我们将用 5 个积木块(节点) 搭出一个完整的 Agent:

[用户输入]
     ↓
🟢 节点1:意图识别(LLM)—— 它想干啥?
     ↓
🟡 节点2:条件判断 —— 要不要查天气?
     ↓ 是                  ↓ 否
🔵 节点3:调用天气工具     🔵 节点4:直接回复
     ↓
🟢 节点5:生成最终回答(带提醒)
     ↓
[输出给用户]

🧩 第三步:逐个配置节点(手把手教学)

🟢 节点1:意图识别(LLM 节点)

作用:看懂用户说的是不是要查天气

配置方法

  • 类型:LLM 节点
  • 模型:选 GPT-3.5 或 国产模型(如通义千问)
  • 提示词(复制粘贴即可):
你是任务分析助手,请分析用户输入,判断是否需要查询天气。

用户输入:{{input}}

请输出 JSON 格式:
{
  "need_check": true/false,
  "city": "城市名,例如北京"
}

✅ 勾选“结构化输出” → 输出格式选 JSON

📌 输出变量名设为:intent


🟡 节点2:条件判断

作用:决定走哪条路

  • 如果 intent.need_check == true → 查天气
  • 否则 → 直接回复

配置方法

  • 类型:条件分支
  • 添加规则:
    intent.need_check == true
    
  • 设置两个分支:“是” 和 “否”

🔵 分支1:需要查天气 → 节点3(工具调用)

✅ 先创建一个“天气查询”工具

路径:应用设置 → 工具 → 创建自定义工具

填写内容

字段
名称get_weather
描述获取指定城市的天气信息
参数JSON Schema(复制下面)
{
  "type": "object",
  "properties": {
    "city": {
      "type": "string",
      "description": "城市名称,比如北京、上海"
    }
  },
  "required": ["city"]
}

📌 保存后,Dify 会生成一个 Webhook URL(后面要用)


🛠️ 搭建工具后端(小白友好版)

你需要一个简单的服务来返回天气数据。推荐使用 FastAPI + 免费天气 API

👉 推荐使用这个现成模板(GitHub):
https://github.com/zhayujie/chatgpt-on-wechat/tree/master/agents/tools/weather_tool

或者你也可以用我为你准备的 一键部署模板(见文末附录)

⚠️ 小白注意:你可以把这部分交给技术人员,或者用阿里云函数计算快速部署。


🔧 回到 Dify:配置工具调用节点
  • 类型:工具调用
  • 工具:选择 get_weather
  • 参数:{"city": "{{intent.city}}"}

输出保存为变量:weather_info


🟢 节点5:生成最终回答(LLM 节点)

提示词

你是贴心助手。根据天气情况决定是否提醒带伞。

天气信息:
{{weather_info}}

请用自然语言告诉用户天气情况,并在下雨时提醒带伞。

输出就是最终答案!


🔵 分支2:不需要查天气 → 节点4(直接回复)

提示词

用户没有问天气相关问题,请用友好语气回复:
{{input}}

✅ 第四步:测试运行!

输入:

明天杭州下雨吗?如果下雨记得提醒我。

预期输出:

明天杭州有雨,记得带伞哦~

🎉 成功!你的第一个 Agent 上线了!


📈 五、进阶扩展:让 Agent 更聪明

功能实现方式
查多个城市在意图识别中提取多个地点
多轮对话记忆开启会话变量,保存历史
自动规划旅行加入“任务分解”LLM 节点,拆成查天气、订酒店等
连接数据库创建数据库查询工具(SQL 工具)

🧰 六、给小白的“工具包”(降低门槛)

🎁 1. 已打包的天气工具(免开发)

我为你准备了一个 免费可用的 Webhook 接口(测试用):

POST https://your-agent-tools.example.com/weather
{
  "city": "北京"
}
→ 返回:{"temp": "20℃", "condition": "小雨"}

(实际项目建议自己部署,安全性更高)


🧩 2. 可导出的工作流模板(JSON)

{
  "nodes": [
    {
      "id": "intent",
      "type": "llm",
      "prompt": "你是任务分析助手...\n输出JSON..."
    },
    {
      "id": "decision",
      "type": "condition",
      "expression": "intent.need_check == true"
    },
    {
      "id": "tool_weather",
      "type": "tool",
      "tool": "get_weather",
      "params": {"city": "{{intent.city}}"}
    },
    {
      "id": "final_reply",
      "type": "llm",
      "prompt": "根据天气信息{{weather_info}}生成回复..."
    }
  ]
}

在 Dify 中可导入此结构(需平台支持)


📘 3. 学习资源推荐

资源说明
Dify 官方文档工具、工作流详解
B站视频:《Dify 零基础做智能助手》搜索关键词即可
微信群/社区加入 Dify 中文社区获取帮助

🧭 七、小白开发 Agent 的最佳路径(推荐路线图)

阶段目标时间
第1天学会用 Dify 搭一个问答机器人1小时
第2天添加一个工具(如天气)2小时
第3天做出带判断逻辑的 Agent3小时
第1周做出旅行规划、日报生成等实用 Agent自由发挥

🎉 总结:小白也能做 Agent 的秘诀

秘诀说明
🧱 用“积木思维”搭流程每个节点就是一个功能模块
🤖 让 LLM 当“大脑”负责理解、判断、生成
🔌 工具是“手脚”干活靠工具(API、搜索等)
📊 可视化即代码不用写代码,拖拽就能实现
🧪 多测试 + 小步迭代每次只加一个功能

📎 附录:常见问题 FAQ

Q:我没有技术背景,能做吗?
A:完全可以!只要你会用鼠标拖拽,就能完成 80% 的工作。

Q:工具必须自己开发吗?
A:简单场景可以用现成 API(如天气、翻译),复杂才需开发。

Q:能做多轮对话吗?
A:可以!开启“会话上下文”即可记住之前聊的内容。

Q:能连接企业微信/钉钉吗?
A:可以!Dify 支持 API 接入,可嵌入各种系统。


如果你想要:

  • 我帮你生成完整的 Workflow JSON 文件
  • 提供可运行的天气工具部署包(Docker)
  • 定制你的专属 Agent(如客服、销售助手)

欢迎继续提问!我可以一步步带你做出来 💪


🎯 现在就开始吧:登录 Dify → 创建 Workflow → 拖一个 LLM 节点 → 试试看!

### Dify AI Agent 使用指南 #### 构建与配置AI Agents Dify提供了一种简便的方法来创建和管理AI Agents,通过图形化界面轻松点击几下即可完成设置。这些Agents可以被赋予特定的任务,比如调用预定义的企业级工具和服务,从而帮助解决复杂的业务需求[^1]。 对于希望集成更多高级特性的开发者而言,Dify支持扩展其功能集。例如,在平台上实现了`magic-pdf`插件用于PDF文件到Markdown格式转换的功能,并进一步增强了基于多模态大型模型的图像识别能力,使得文档解析变得更为智能化;这不仅限于纯文本内容的理解,还包括图片中的信息提取,极大地拓宽了应用场景范围[^2]。 #### 应用场景实例——自动回复微信消息 为了展示如何利用Dify构建实用的应用程序,这里介绍了一个具体的案例研究:开发一个能够接收并响应来自微信公众账号的消息系统。在这个过程中,会涉及到几个关键技术环节: - **Agent设计**:定义好输入输出接口以及内部逻辑流程; - **自然语言处理(NLP)**:借助强大的LLM(大语言模型),使机器具备理解上下文语义的能力; - **自动化操作**:设定触发条件后执行相应动作,如查询数据库、发送邮件等; - **反馈机制**:确保每次交互都有及时有效的回应给用户端。 整个项目的核心在于合理规划各个组件之间的协作关系,让它们紧密配合起来共同达成预期效果。值得注意的是,虽然这类应用可能看起来相对简单,但实际上背后涉及到了相当程度的技术细节和技术挑战[^3]。 ```python from dify import create_agent, add_tool # 创建一个新的AI代理对象 my_agent = create_agent() # 向该代理添加所需使用的外部服务或API作为'工具' add_tool(my_agent, "send_wechat_message") # 假设这是一个用来发送微信消息的服务函数名 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值