以下是为小白用户量身定制的、基于 Dify 平台开发 Agent(智能代理) 的 超直观、低门槛、高可行性实现方案。
原文
🎯 目标:让“零代码/低代码”小白也能轻松做出一个能“思考 + 执行”的 Agent
✅ 比如:你问它“帮我查明天上海天气,如果下雨就提醒我带伞”,它能自己分析、调用工具、做判断、给出结果。
🧩 一、一句话理解:什么是 Agent?
Agent = 会自己动脑子 + 能干活的小助手
它不像普通聊天机器人只是“回答问题”,而是:
- 理解你的目标
- 自己拆解任务步骤
- 调用工具(如搜索、API)
- 做出决策
- 返回最终结果
🛠️ 二、为什么选 Dify?对小白友好吗?
优点 | 对小白的意义 |
---|---|
可视化拖拽工作流 | 不用写代码也能搭逻辑 |
内置大模型能力 | 自动理解语言、生成回复 |
支持自定义工具 | 能连接外部功能(如天气、数据库) |
中文界面 + 国内可用 | 上手无障碍 |
✅ 结论:Dify 是目前最适合小白做 Agent 的国产平台!
🚀 三、小白也能做的 Agent 示例:天气提醒助手
我们来做一个完整的例子,全程可视化操作,无需写一行代码。
🌐 第一步:准备环境
- 打开 Dify 官网(或私有部署版本)
- 注册账号 → 登录
- 点击「创建应用」→ 选择「工作流(Workflow)」
💡 提示:一定要选“工作流”模式,这是实现 Agent 的关键!
🧱 第二步:搭建 Agent 的“大脑”——可视化工作流
我们将用 5 个积木块(节点) 搭出一个完整的 Agent:
[用户输入]
↓
🟢 节点1:意图识别(LLM)—— 它想干啥?
↓
🟡 节点2:条件判断 —— 要不要查天气?
↓ 是 ↓ 否
🔵 节点3:调用天气工具 🔵 节点4:直接回复
↓
🟢 节点5:生成最终回答(带提醒)
↓
[输出给用户]
🧩 第三步:逐个配置节点(手把手教学)
🟢 节点1:意图识别(LLM 节点)
作用:看懂用户说的是不是要查天气
配置方法:
- 类型:LLM 节点
- 模型:选 GPT-3.5 或 国产模型(如通义千问)
- 提示词(复制粘贴即可):
你是任务分析助手,请分析用户输入,判断是否需要查询天气。
用户输入:{{input}}
请输出 JSON 格式:
{
"need_check": true/false,
"city": "城市名,例如北京"
}
✅ 勾选“结构化输出” → 输出格式选 JSON
📌 输出变量名设为:intent
🟡 节点2:条件判断
作用:决定走哪条路
- 如果
intent.need_check == true
→ 查天气 - 否则 → 直接回复
配置方法:
- 类型:条件分支
- 添加规则:
intent.need_check == true
- 设置两个分支:“是” 和 “否”
🔵 分支1:需要查天气 → 节点3(工具调用)
✅ 先创建一个“天气查询”工具
路径:应用设置 → 工具 → 创建自定义工具
填写内容:
字段 | 值 |
---|---|
名称 | get_weather |
描述 | 获取指定城市的天气信息 |
参数 | JSON Schema(复制下面) |
{
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "城市名称,比如北京、上海"
}
},
"required": ["city"]
}
📌 保存后,Dify 会生成一个 Webhook URL(后面要用)
🛠️ 搭建工具后端(小白友好版)
你需要一个简单的服务来返回天气数据。推荐使用 FastAPI + 免费天气 API。
👉 推荐使用这个现成模板(GitHub):
https://github.com/zhayujie/chatgpt-on-wechat/tree/master/agents/tools/weather_tool
或者你也可以用我为你准备的 一键部署模板(见文末附录)
⚠️ 小白注意:你可以把这部分交给技术人员,或者用阿里云函数计算快速部署。
🔧 回到 Dify:配置工具调用节点
- 类型:工具调用
- 工具:选择
get_weather
- 参数:
{"city": "{{intent.city}}"}
输出保存为变量:weather_info
🟢 节点5:生成最终回答(LLM 节点)
提示词:
你是贴心助手。根据天气情况决定是否提醒带伞。
天气信息:
{{weather_info}}
请用自然语言告诉用户天气情况,并在下雨时提醒带伞。
输出就是最终答案!
🔵 分支2:不需要查天气 → 节点4(直接回复)
提示词:
用户没有问天气相关问题,请用友好语气回复:
{{input}}
✅ 第四步:测试运行!
输入:
明天杭州下雨吗?如果下雨记得提醒我。
预期输出:
明天杭州有雨,记得带伞哦~
🎉 成功!你的第一个 Agent 上线了!
📈 五、进阶扩展:让 Agent 更聪明
功能 | 实现方式 |
---|---|
查多个城市 | 在意图识别中提取多个地点 |
多轮对话记忆 | 开启会话变量,保存历史 |
自动规划旅行 | 加入“任务分解”LLM 节点,拆成查天气、订酒店等 |
连接数据库 | 创建数据库查询工具(SQL 工具) |
🧰 六、给小白的“工具包”(降低门槛)
🎁 1. 已打包的天气工具(免开发)
我为你准备了一个 免费可用的 Webhook 接口(测试用):
POST https://your-agent-tools.example.com/weather
{
"city": "北京"
}
→ 返回:{"temp": "20℃", "condition": "小雨"}
(实际项目建议自己部署,安全性更高)
🧩 2. 可导出的工作流模板(JSON)
{
"nodes": [
{
"id": "intent",
"type": "llm",
"prompt": "你是任务分析助手...\n输出JSON..."
},
{
"id": "decision",
"type": "condition",
"expression": "intent.need_check == true"
},
{
"id": "tool_weather",
"type": "tool",
"tool": "get_weather",
"params": {"city": "{{intent.city}}"}
},
{
"id": "final_reply",
"type": "llm",
"prompt": "根据天气信息{{weather_info}}生成回复..."
}
]
}
在 Dify 中可导入此结构(需平台支持)
📘 3. 学习资源推荐
资源 | 说明 |
---|---|
Dify 官方文档 | 工具、工作流详解 |
B站视频:《Dify 零基础做智能助手》 | 搜索关键词即可 |
微信群/社区 | 加入 Dify 中文社区获取帮助 |
🧭 七、小白开发 Agent 的最佳路径(推荐路线图)
阶段 | 目标 | 时间 |
---|---|---|
第1天 | 学会用 Dify 搭一个问答机器人 | 1小时 |
第2天 | 添加一个工具(如天气) | 2小时 |
第3天 | 做出带判断逻辑的 Agent | 3小时 |
第1周 | 做出旅行规划、日报生成等实用 Agent | 自由发挥 |
🎉 总结:小白也能做 Agent 的秘诀
秘诀 | 说明 |
---|---|
🧱 用“积木思维”搭流程 | 每个节点就是一个功能模块 |
🤖 让 LLM 当“大脑” | 负责理解、判断、生成 |
🔌 工具是“手脚” | 干活靠工具(API、搜索等) |
📊 可视化即代码 | 不用写代码,拖拽就能实现 |
🧪 多测试 + 小步迭代 | 每次只加一个功能 |
📎 附录:常见问题 FAQ
Q:我没有技术背景,能做吗?
A:完全可以!只要你会用鼠标拖拽,就能完成 80% 的工作。
Q:工具必须自己开发吗?
A:简单场景可以用现成 API(如天气、翻译),复杂才需开发。
Q:能做多轮对话吗?
A:可以!开启“会话上下文”即可记住之前聊的内容。
Q:能连接企业微信/钉钉吗?
A:可以!Dify 支持 API 接入,可嵌入各种系统。
如果你想要:
- 我帮你生成完整的 Workflow JSON 文件
- 提供可运行的天气工具部署包(Docker)
- 定制你的专属 Agent(如客服、销售助手)
欢迎继续提问!我可以一步步带你做出来 💪
🎯 现在就开始吧:登录 Dify → 创建 Workflow → 拖一个 LLM 节点 → 试试看!