【SLAM】在Win10上实现Nerf-Pytorch【GPU版】

本教程详述如何在Win10环境下使用GPU搭建Nerf-Pytorch,包括从下载源码、安装依赖到训练Lego和Fern NeRF的步骤,提供预训练模型及数据集下载链接,确保结果可复现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ReadMe

Github链接

NeRF (神经辐射场)是一种在合成复杂场景的新颖视图方面取得最新成果的方法。下面是这个资源库(下面提供预训练模型)生成的一些视频:
在这里插入图片描述
在这里插入图片描述
本项目是NeRF的一个PyTorch实现,在运行速度提高1.3倍的同时重现了结果。该代码基于作者的Tensorflow实现,并通过测试与之进行了数值匹配。

安装

git clone https://github.com/yenchenlin/nerf-pytorch.git
cd nerf-pytorch
pip install -r requirements.txt

1、通过git命令从github上下载Nerf-Pytorch工程;
2、下载好后,在该路径下存在名为nerf-pytorch的文件夹;
3、进入nerf-pytorch文件夹下;
4、通过pip命令安装requirements.txt里所需的配置依赖。

1、没有git命令,可以直接从github网站下载.zip压缩包
在这里插入图片描述
2、解压该压缩包,可以得到名为nerf-pytorch-master的文件夹;
3、进入nerf-pytorch-master文件夹下;
4、通过pip命令安装requirements.txt里所需的配置依赖。

依赖

  • PyTorch 1.4
  • matplotlib
  • numpy
  • imageio
  • imageio-ffmpeg
  • configargparse

LLFF数据加载器需要ImageMagick。

如果你想在自己的真实数据上运行,你还需要设置LLFF代码(和COLMAP)来计算姿势。

运行

下载两个示例数据集:lego和fern

bash download_example_data.sh

bash命令一般在Linux环境使用;
Windows环境,可以通过git bash,借助git实现bash命令;
Windows环境,可以直接按照download_example_data.sh文件手动下载

download_example_data.sh文件:

wget http://cseweb.ucsd.edu/~viscomp/projects/LF/papers/ECCV20/nerf/tiny_nerf_data.npz
mkdir -p data
cd data
wget http://cseweb.ucsd.edu/~viscomp/projects/LF/papers/ECCV20/nerf/nerf_example_data.zip
unzip nerf_example_data.zip
cd ..

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余加木

想喝蜜雪冰城柠檬水(≧≦)/

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值