浴谷P1141 01迷宫

这篇博客介绍了一个基于动态规划和图论的迷宫问题。给定一个由0和1组成的迷宫,任务是从特定格子出发计算可以到达的格子总数。博主提供了输入输出格式,解题思路和代码实现,并展示了运行结果。

题目描述

有一个仅由数字00与11组成的n \times nn×n格迷宫。若你位于一格00上,那么你可以移动到相邻44格中的某一格11上,同样若你位于一格11上,那么你可以移动到相邻44格中的某一格00上。

你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。

输入格式

第11行为两个正整数n,mn,m。

下面nn行,每行nn个字符,字符只可能是00或者11,字符之间没有空格。

接下来mm行,每行22个用空格分隔的正整数i,ji,j,对应了迷宫中第ii行第jj列的一个格子,询问从这一格开始能移动到多少格。

输出格式

mm行,对于每个询问输出相应答案。

输入输出样例

输入

2 2
01
10
1 1
2 2

输出

4
4

解题思路

该题使用深搜,记录每个格子是否被搜索过,每搜到一个格子ans+1,数组记录当前格子的位置,每次都向4个方向的满足条件的格子扩展,搜完一块后把数组记录的格子的答案赋成连通块总的格子数。 

代码如下

#include<iostream>
#include<string.h>
using namespace std;
int m, n, ans[1000000], x, y, f[1001][1001];
char s[1001][1001];
void dfs(int r, int c, int z, int t) {
	if (r < 0 || r >= n || c >= n || f[r][c] != -1 || s[r][c] - '0' != z)
		return;
	f[r][c] = t;
	ans[t]++;
	dfs(r - 1, c, !z, t);
	dfs(r + 1, c, !z, t);
	dfs(r, c - 1, !z, t);
	df
在解决P1141 01迷宫时,通常采用深度优先搜索(DFS)或广度优先搜索(BFS)来实现。这类问的核心在于如何找到从起点到终点的路径,其中迷宫中的`0`表示可以通过的路径,而`1`则表示障碍物。 ### 问描述 P1141 01迷宫通常给出一个二维网格,每个格子包含`0`或`1`,要求从起点出发,找到到达终点的最短路径。通常,起点为`(0,0)`,终点为`(n-1,m-1)`,其中`n`和`m`分别为迷宫的行数和列数。 ### 解决思路 1. **BFS方法**:适用于寻找最短路径问,因为BFS会逐层扩展,确保第一次到达终点时路径最短。 2. **DFS方法**:虽然可以找到路径,但不一定是最短路径,适用于不需要最短路径的情况。 3. **标记访问**:为了避免重复访问,需要维护一个访问标记数组。 4. **方向控制**:通常有四个方向可以移动:上、下、左、右。 ### BFS实现代码示例 以下是一个使用BFS解决P1141 01迷宫的Python实现: ```python from collections import deque def solve_maze(maze): n, m = len(maze), len(maze[0]) visited = [[False] * m for _ in range(n)] directions = [(-1, 0), (1, 0), (0, -1), (0, 1)] # 上、下、左、右 queue = deque() queue.append((0, 0, 0)) # 起点(0,0),步数0 visited[0][0] = True while queue: x, y, steps = queue.popleft() if x == n - 1 and y == m - 1: return steps # 找到终点,返回步数 for dx, dy in directions: nx, ny = x + dx, y + dy if 0 <= nx < n and 0 <= ny < m and maze[nx][ny] == 0 and not visited[nx][ny]: visited[nx][ny] = True queue.append((nx, ny, steps + 1)) return -1 # 无法到达终点 # 示例迷宫 maze = [ [0, 1, 0, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0] ] print(solve_maze(maze)) # 输出最短路径的步数 ``` ### 代码解析 1. **初始化**:使用`deque`队列存储待访问的节点,起点为`(0, 0)`,初始步数为`0`。 2. **BFS循环**:从队列中取出当前节点,检查是否到达终点。若未到达终点,则向四个方向扩展,将未访问过的合法节点加入队列。 3. **终止条件**:若队列为空且未找到终点,则返回`-1`,表示无法到达终点。 ### 复杂度分析 - **时间复杂度**:`O(n*m)`,其中`n`和`m`分别为迷宫的行数和列数,每个节点最多访问一次。 - **空间复杂度**:`O(n*m)`,主要为队列和访问标记数组的空间。 ### 优化点 - 可以通过提前终止搜索来优化,一旦找到终点即可返回结果。 - 如果迷宫非常大,可以考虑使用双向BFS进一步优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值