You have d
dice, and each die has f
faces numbered 1, 2, ..., f
.
Return the number of possible ways (out of fd
total ways) modulo 10^9 + 7
to roll the dice so the sum of the face up numbers equals target
.
Example 1:
Input: d = 1, f = 6, target = 3 Output: 1 Explanation: You throw one die with 6 faces. There is only one way to get a sum of 3.
Example 2:
Input: d = 2, f = 6, target = 7 Output: 6 Explanation: You throw two dice, each with 6 faces. There are 6 ways to get a sum of 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1.
Example 3:
Input: d = 2, f = 5, target = 10 Output: 1 Explanation: You throw two dice, each with 5 faces. There is only one way to get a sum of 10: 5+5.
Example 4:
Input: d = 1, f = 2, target = 3 Output: 0 Explanation: You throw one die with 2 faces. There is no way to get a sum of 3.
Example 5:
Input: d = 30, f = 30, target = 500 Output: 222616187 Explanation: The answer must be returned modulo 10^9 + 7.
Constraints:
1 <= d, f <= 30
1 <= target <= 1000
class Solution(object):
def numRollsToTarget(self, d, f, target):
"""
:type d: int
:type f: int
:type target: int
:rtype: int
"""
mod=int(1e9+7)
memo={}
def helper(dd,tt):
if tt<=0: return 0
if dd*f<tt: return 0
if dd==1 and 1<=tt<=f: return 1
if (dd,tt) in memo: return memo[(dd,tt)]
res=0
for i in range(1,f+1):
res+=helper(dd-1,tt-i)
res%=mod
memo[(dd,tt)]=res
return res
return helper(d,target)%mod