洛谷——P1573 栈的操作

本文解析了如何在满足特定规则的情况下,通过四个栈中的弹出与压入操作,将第四个栈中的n个元素最少次数地移动到第一个栈。涉及规则包括栈非空和元素大小比较。提供了一个示例和AC代码,适用于n≤2×10^9的数值范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


栈的操作

题目描述

现在有四个栈,其中前三个为空,第四个栈从栈顶到栈底分别为 1 , 2 , 3 , ⋯   , n 1,2,3,\cdots ,n 1,2,3,,n。每一个栈只支持一种操作:弹出并压入。它指的是把其中一个栈 A 的栈顶元素 x x x 弹出,并马上压入任意一个栈 B 中。但是这样的操作必须符合一定的规则才能进行。

  • 规则 1 1 1:A 栈不能为空。
  • 规则 2 2 2:B 栈为空或 x x x 比 B 栈栈顶要小。

对于给定的 n n n,请你求出把第四个栈的 n n n 个元素全部移到第一个栈的最少操作次数。

由于最少操作次数可能很多,请你把答案对 1 0 6 + 7 10^6+7 106+7 取模。

输入格式

一行,一个整数 n n n

输出格式

一行,一个正整数,为把最少操作次数   m o d   ( 1 0 6 + 7 ) \bmod (10^6+7) mod(106+7) 的值。

样例 #1

样例输入 #1

2

样例输出 #1

3

提示

  • 对于 30 % 30\% 30% 的数据, n ≤ 8 n\le 8 n8
  • 对于 60 % 60\% 60% 的数据, n ≤ 60 n\le 60 n60
  • 对于 100 % 100\% 100% 的数据, n ≤ 2 × 1 0 9 n\le 2\times 10^9 n2×109

AC代码

#include<bits/stdc++.h>
using namespace std;
long long n,k=1,v=1,ans,mo=1e6+7;
int main() {
    cin>>n;
    for(k=1,v=1;n>k;n-=k,k++,v=(v+v)%mo){
      ans=(ans+k*v)%mo;
    }
    cout<<(ans+n*v)%mo;
    return 0;
}

### 关于 P1746 离开中山路的 Python 解思路 对于编号为P1746的目《离开中山路》,该问属于图论中的最短路径求解类问。给定地图上的多个节点以及连接这些节点的道路长度,目标是从起点到终点找到一条总距离最小的路径[^1]。 #### 数据结构的选择 为了高效处理此类问,可以采用邻接表来表示输入的地图数据。邻接表不仅节省空间而且便于快速访问相连边的信息。此外,在寻找最短路径过程中,优先队列(通常通过堆实现)能够帮助按照当前累计成本从小到大顺序遍历各个顶点[^2]。 #### Dijkstra算法的应用 针对本特点——即不存在负权边的情况,Dijkstra算法是一个合适的选择。此方法从源结点出发逐步扩展已知区域直至覆盖整个网络;每次从未被收录进来的候选集中挑选具有最低估计代价者作为新的探索中心,并更新其相邻未访问过的邻居们的临时标记值直到抵达目的地为止[^3]。 下面是具体的Python代码实现: ```python import heapq def dijkstra(n, edges, start, end): graph = [[] for _ in range(n)] # 构建加权无向图的邻接列表形式 for u, v, w in edges: graph[u].append((v, w)) graph[v].append((u, w)) dist = [float('inf')] * n # 初始化所有节点的距离为无穷大 prev = [-1] * n # 记录前驱用于重建路径 pq = [(0, start)] # 将起始位置加入优先级队列并设初始距离为零 dist[start] = 0 while pq: d, node = heapq.heappop(pq) if node == end: # 提早终止条件:当到达终点时停止搜索 break if d > dist[node]: # 跳过已经找到了更优解的情形 continue for neighbor, weight in graph[node]: new_dist = d + weight if new_dist < dist[neighbor]: dist[neighbor] = new_dist prev[neighbor] = node heapq.heappush(pq, (new_dist, neighbor)) path = [] curr = end while curr != -1: path.append(curr) curr = prev[curr] return list(reversed(path)), dist[end] if __name__ == "__main__": N = ... # 输入城市数量N M = ... # 道路条数M roads = [...] # 所有道路信息[(A_i,B_i,C_i)...] S, T = ..., ... # 出发点S和目的地点T result_path, min_distance = dijkstra(N, roads, S-1, T-1) # 注意索引调整 print(f"The shortest distance is {min_distance}.") print("The optimal route:", " -> ".join(map(str,[i+1 for i in result_path]))) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值