独家 | Youshua Bengio等人新书《Deep Learning》评介
本文由“智能立方”公众号【AIcube】独家原创
转载请注明出处
★大神Bengio的新书《Deep Learning》终于完稿了,第一时间下载速读了一遍。和Bengio之前的《Learning Deep Architectures for AI》相比,风格变化很大,可能跟本书的定位相关。
本书目标受众是希望学习机器学习的大学生们(本科生或研究生)和没有机器学习背景的软件工程师们。因此,增加了一些基础知识,比如线性代数、概率论以及机器学习等,同时对于不同神经网络模型的介绍也更加详细,并加入了最新的研究成果,特别是2015年的很多工作也都进行了介绍。如果书名起的俗气一点,可以套用从入门到精通之类名字。
本书分为三个部分:
第一部分介绍了基础的数学和机器学习知识,这部分我是直接略过了。深度学习本身所需要的基础知识并不多,有一点线性代数和机器学习的概念就足够了。
第二部分介绍了FNN、CNN、RNN等成熟的网络模型。除了详细的模型介绍外,第6章在反向梯度一节中介绍了Theano中采用的符号微分自动求梯度方法。第7章介绍不少干货,比如正则化、Dropout、对抗训练等,第8章讲了一些优化技巧,在SGD一统江湖的今天,从实用角度上讲,大家只需要了解些参数初始化、动态学习率等策略就足够了。如果想深入了解,可以看看Batch Normalization、Curriculum Learning等最近比较热门的优化方法。第11章可以看作是实战指导,在动手写代码之前,最好先阅读下这一章。
第三部分介绍了作者比较看好的新模型:深度生成模型(Deep Generative Models),并不惜篇幅地在第13-19章进行铺垫。这部分附带了作者强烈的个人偏好。如果只是希望了解深度学习的读者,这部分可以不用看。除了第20章外,其他部分和深度学习关系不大。如果想了解这方面内容的读者,最好先阅读Michael Jordan的《An Introduction to Probabilistic Graphical Models》。Jordan的这本书写得通俗易懂,非常适合入门。
关于作者:
Ian Goodfellow,谷歌大脑团队科学家,Bengio的研究生。AaronCourville,蒙特利尔大学助理教授,Bengio的博士后。这两位不太熟悉,这里不太过多介绍了。
Yoshua Bengio,蒙特利尔大学教授,人工神经网络研究领域的超级大牛(我个人倾向的big4为Geoff Hinton、Yann LeCun、Yoshua Bengio以及Jürgen Schmidhuber),最新Google Scholar统计的论文引用3万7千次,机器学习泰斗Michael Jordan的博士后。其主要贡献在于:1)神经网络语言模型[1] :开启了基于神经网络自然语言处理方法的先河,引发了embeddings热潮;2)可以自动求梯度的Theano,给无数研究员、研究生提供赖以生存的工具;3)最早关于RNN的梯度弥散问题的分析,看看现在无所不能的RNN,自然会想起Bengio的慧眼识珠;4)和Hinton、Lecun一起引领了人工神经网络的复兴[2] 。
最后,我想表达下对Bengio的喜爱,源自一段Bengio在Quora上关于自己没有去工业界的回答[3] :1)学术界更适合长期的基础研究;2)学术界的研究成果可以普惠大众;3)大学里的教授可以更好地培养下一代研究人员,而这对未来研究的发展非常重要;4)再多的薪水也不能增加幸福水平,知足常乐;5)我的地盘我做主;6)和大量的学生合作可以更好地发挥我的能力。
参考阅读:
[2] LeCun, Y., Bengio, Y., &Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.