机器学习13/100天-SVM实践

SVM实践:100天机器学习之旅
本文档记录了使用SVM进行机器学习的实践过程,从导入数据到模型评估,包括数据划分、标准化、模型构建、结果可视化等步骤。

github: 100DaysOfMLCode

1.导入常用库

import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd

2.导入数据

dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:,[2,3]].values
y = dataset.iloc[:,4].values

3.数据划分

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

4.数据标准化

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)

5.模型

from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)
classifier.fit(X_train, y_train)

y_pred = classifier.predict(X_test)

6.评估

fro