关于gethostbyname在多线程环境下的阻塞问题

探讨Unix/Linux环境下gethostbyname函数的局限性及其对多线程爬虫性能的影响。介绍自定义DNS客户端及异步DNS库adns的应用,以提高DNS解析效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Unix/Linux下的gethostbyname函数常用来向DNS查询一个域名的IP地址。 由于DNS的递归查询,常常会发生gethostbyname函数在查询一个域名时严重超时。而该函数又不能像connect和read等函数那样通过setsockopt或者select函数那样设置超时时间,因此常常成为程序的瓶颈。有人提出一种解决办法是用alarm设置定时信号,如果超时就用setjmp和longjmp跳过gethostbyname函数(这种方式我没有试过,不知道具体效果如何)。
    在多线程下面,gethostbyname会一个更严重的问题,就是如果有一个线程的gethostbyname发生阻塞,其它线程都会在gethostbyname处发生阻塞。我在编写爬虫时也遇到了这个让我疑惑很久的问题,所有的爬虫线程都阻塞在gethostbyname处,导致爬虫速度非常慢。在网上google了很长时间这个问题,也没有找到解答。今天凑巧在实验室的googlegroup里面发现了一本电子书"Mining the Web - Discovering Knowledge from Hypertext Data",其中在讲解爬虫时有下面几段文字:

    Many clients for DNS resolution are coded poorly.Most UNIX systems provide an implementation of gethostbyname (the DNS client API—application program interface), which cannot concurrently handle multiple outstanding requests. Therefore, the crawler cannot issue many resolution requests together and poll at a later time for completion of individual requests, which is critical for acceptable performance. Furthermore, if the system-provided client is used, there is no way to distribute load among a number of DNS servers. For all these reasons, many crawlers choose to include their own custom client for DNS name resolution. The Mercator crawler from Compaq System Research Center reduced the time spent in DNS from as high as 87% to a modest 25% by implementing a custom client. The ADNS asynchronous DNS client library is ideal for use in crawlers.
    In spite of these optimizations, a large-scale crawler will spend a substantial fraction of its network time not waiting for Http data transfer, but for address resolution. For every hostname that has not been resolved before (which happens frequently with crawlers), the local DNS may have to go across many network hops to fill its cache for the first time. To overlap this unavoidable delay with useful work, prefetching can be used. When a page that has just been fetched is parsed, a stream of HREFs is extracted. Right at this time, that is, even before any of the corresponding URLs are fetched, hostnames are extracted from the HREF targets, and DNS resolution requests are made to the caching server. The prefetching client is usually implemented using UDP  instead of TCP, and it does not wait for resolution to be completed. The request serves only to fill the DNS cache so that resolution will be fast when the page is actually needed later on.

    大意是说unix的gethostbyname无法处理在并发程序下使用,这是先天的缺陷是无法改变的。大型爬虫往往不会使用gethostbyname,而是实现自己独立定制的DNS客户端。这样可以实现DNS的负载平衡,而且通过异步解析能够大大提高DNS解析速度。DNS客户端往往用UDP实现,可以在爬虫爬取网页前提前解析URL的IP。文章中还提到了一个开源的异步DNS库adns,主页是http://www.chiark.greenend.org.uk/~ian/adns/
    从以上可看出,gethostbyname并不适用于多线程环境以及其它对DNS解析速度要求较高的程序。
<think>嗯,用户想解决多线程域名解析时总时间计算的问题。首先,我需要理解他的需求。多线程处理域名解析,通常是为了提高效率,但总时间的计算可能涉及到线程的启动、执行和同步。用户可能想知道如何正确测量从开始所有线程到它们全部完成所花费的总时间。 首先,我应该考虑多线程的基本实现方法。在Python中,常用的多线程模块有`threading`和`concurrent.futures`里的`ThreadPoolExecutor`。用户提到了“慕课示例”,可能希望有一个具体的代码示例。我需要确保代码正确,并且能够准确测量总时间。 然后,关于时间计算。如果直接在每个线程中记录时间,可能会有误差,因为线程是并发执行的。正确的方法应该是在所有线程启动前记录开始时间,然后等待所有线程完成后再记录结束时间。两者之差就是总耗时。这里需要注意的是,使用`ThreadPoolExecutor`的`map`方法或者`as_completed`来等待所有任务完成。 另外,用户可能对线程池的参数不太清楚,比如核心线程数、最大线程数等,这些会影响性能。根据引用[1],核心线程数和任务队列的设置可能会影响解析效率。需要合理设置这些参数,避免过多的线程切换或者队列堵塞。 还需要考虑域名解析本身可能涉及的I/O操作,比如DNS查询,这属于I/O密集型任务,适合多线程处理。Python的GIL在这里影响不大,因为线程大部分时间在等待I/O。 可能的问题点:如何确保所有线程都完成后再计算时间?需要使用线程池的shutdown方法或者结合上下文管理器。另外,示例中是否包含了异常处理?比如某些域名无法解析的情况,是否会影响总时间的计算? 最后,生成相关问题时要围绕多线程优化、参数配置、异常处理等方面,帮助用户深入理解。</think>### 多线程域名解析总时间计算方法 #### 关键实现步骤: 1. **使用线程池优化解析效率** 推荐使用`concurrent.futures.ThreadPoolExecutor`管理线程资源,通过调整`max_workers`参数控制并发线程数[^1]。 2. **时间测量逻辑** - 记录所有线程开始执行前的时间戳 - 等待所有线程任务完成 - 计算总耗时差值 #### 代码示例: ```python import socket import time from concurrent.futures import ThreadPoolExecutor def resolve_domain(domain): try: return socket.gethostbyname(domain) except socket.gaierror: return None def batch_resolve(domains, max_workers=5): start_time = time.perf_counter() with ThreadPoolExecutor(max_workers=max_workers) as executor: results = list(executor.map(resolve_domain, domains)) total_time = time.perf_counter() - start_time return results, total_time # 使用示例 domains = ["baidu.com", "qq.com", "alibaba.com", "tencent.com", "jd.com"] results, cost_time = batch_resolve(domains) print(f"解析完成,耗时{cost_time:.2f}秒") ``` #### 性能优化建议: 1. **线程数设置**:建议根据网络带宽和DNS服务器限制调整`max_workers`,通常设置5-20线程 2. **超时机制**:可在`socket.gethostbyname`外层包裹超时判断 3. **结果缓存**:对重复域名可添加本地缓存减少重复查询
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值