使用conda/pip安装pytorch 0.3.1教程(mac/windos/linux)

本文提供了详细步骤,指导如何使用conda和pip在Linux及macOS上安装PyTorch 0.3.1及其torchvision库,包括不同CUDA版本和Python版本的支持。针对被墙问题,提供了直接的安装命令和源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch v0.3.1发布,添加余弦退火方案来调整学习率以及添加random_split/reduce等函数,其实更新有一段时间了,很多小伙伴安装的时候发现被墙了无法使用,所以我整理了一下方便大家使用。你可以参考自己的服务器和python版本进行选择:

一、使用conda安装pytorch 0.3.1和torchvision

包管理器服务器CUDAPython版本操作方法
condalinuxcuda8python2.7conda install pytorch torchvision -c pytorch
condalinuxcuda9.0python2.7conda install pytorch torchvision cuda90 -c pytorch
condalinuxcuda9.1python2.7conda install pytorch torchvision cuda91 -c pytorch
condalinuxcudanonepython2.7conda install pytorch-cpu torchvision -c pytorch
condalinuxcuda8python3.5conda install pytorch torchvision -c pytorch
condalinuxcuda9.0python3.5conda install pytorch torchvision cuda90 -c pytorch
condalinuxcuda9.1python3.5conda install pytorch torchvision cuda91 -c pytorch
condalinuxcudanonepython3.5conda install pytorch-cpu torchvision -c pytorch
condalinuxcuda8python3.6conda install pytorch torchvision -c pytorch
condalinuxcuda9.0python3.6conda install pytorch torchvision cuda90 -c pytorch
condalinuxcuda9.1python3.6conda install pytorch torchvision cuda91 -c pytorch
condalinuxcudanonepython3.6conda install pytorch-cpu torchvision -c pytorch
condaosxcuda8python2.7conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda9.0python2.7conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda9.1python2.7conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcudanonepython2.7conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda8python3.5conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda9.0python3.5conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda9.1python3.5conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcudanonepython3.5conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda8python3.6conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda9.0python3.6conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcuda9.1python3.6conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed
condaosxcudanonepython3.6conda install pytorch torchvision -c pytorch
# macOS Binaries dont support CUDA
install from source if CUDA is needed

二、使用PIP与pip3安装pytorch 0.3.1和torchvision

除了使用conda以外,我们还可以使用pip管理工具,当我们pythonpython3.x时候,可以使用pip3安装:

包管理器服务器CUDAPython版本操作方法
piposxcuda8python2.7pip install http://download.pytorch.org/whl/torch-0.3.1-cp27-none-macosx_10_6_x86_64.whl
pip install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda9.0python2.7pip install http://download.pytorch.org/whl/torch-0.3.1-cp27-none-macosx_10_6_x86_64.whl
pip install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda9.1python2.7pip install http://download.pytorch.org/whl/torch-0.3.1-cp27-none-macosx_10_6_x86_64.whl
pip install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcudanonepython2.7pip install http://download.pytorch.org/whl/torch-0.3.1-cp27-none-macosx_10_6_x86_64.whl
pip install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda8python3.5pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp35-cp35m-macosx_10_6_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda9.0python3.5pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp35-cp35m-macosx_10_6_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda9.1python3.5pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp35-cp35m-macosx_10_6_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcudanonepython3.5pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp35-cp35m-macosx_10_6_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda8python3.6pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda9.0python3.6pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcuda9.1python3.6pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piposxcudanonepython3.6pip3 install http://download.pytorch.org/whl/torch-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
pip3 install torchvision
# macOS Binaries dont support CUDA
install from source if CUDA is needed
piplinuxcudanonepython2.7pip install http://download.pytorch.org/whl/cpu/torch-0.3.1-cp27-cp27mu-linux_x86_64.whl
pip install torchvision
# if the above command does not work
then you have python 2.7 UCS2
use this command
pip install http://download.pytorch.org/whl/cpu/torch-0.3.1-cp27-cp27m-linux_x86_64.whl
piplinuxcuda8python2.7pip install http://download.pytorch.org/whl/cu80/torch-0.3.1-cp27-cp27mu-linux_x86_64.whl
pip install torchvision
# if the above command does not\ work
then you have python 2.7 UCS2
use this command
pip install http://download.pytorch.org/whl/cu80/torch-0.3.1-cp27-cp27m-linux_x86_64.whl
piplinuxcuda9.0python2.7pip install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp27-cp27mu-linux_x86_64.whl
pip install torchvision
# if the above command does not\ work
then you have python 2.7 UCS2
use this command
pip install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp27-cp27m-linux_x86_64.whl
piplinuxcuda9.1python2.7pip install http://download.pytorch.org/whl/cu91/torch-0.3.1-cp27-cp27mu-linux_x86_64.whl
pip install torchvision
# if the above command does not\ work
then you have python 2.7 UCS2
use this command
pip install http://download.pytorch.org/whl/cu91/torch-0.3.1-cp27-cp27m-linux_x86_64.whl
piplinuxcudanonepython3.5pip3 install http://download.pytorch.org/whl/cpu/torch-0.3.1-cp35-cp35m-linux_x86_64.whl
pip3 install torchvision
piplinuxcuda8python3.5pip3 install http://download.pytorch.org/whl/cu80/torch-0.3.1-cp35-cp35m-linux_x86_64.whl
pip3 install torchvision
piplinuxcuda9.0python3.5pip3 install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp35-cp35m-linux_x86_64.whl
pip3 install torchvision
piplinuxcuda9.1python3.5pip3 install http://download.pytorch.org/whl/cu91/torch-0.3.1-cp35-cp35m-linux_x86_64.whl
pip3 install torchvision
piplinuxcudanonepython3.6pip3 install http://download.pytorch.org/whl/cpu/torch-0.3.1-cp36-cp36m-linux_x86_64.whl
pip3 install torchvision
piplinuxcuda8python3.6pip3 install http://download.pytorch.org/whl/cu80/torch-0.3.1-cp36-cp36m-linux_x86_64.whl
pip3 install torchvision
piplinuxcuda9.0python3.6pip3 install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp36-cp36m-linux_x86_64.whl
pip3 install torchvision
piplinuxcuda9.1python3.6pip3 install http://download.pytorch.org/whl/cu91/torch-0.3.1-cp36-cp36m-linux_x86_64.whl
pip3 install torchvision

其实安装方法都大同小异,如果你想要查看pytorch 0.3.1的更新内容的话可以查看pytorch v0.3.1发布,添加余弦退火方案来调整学习率以及添加random_split/reduce等函数如果你已经安装了pytorch的话可以测试Pytorch如何更新版本与卸载,使用pip,conda更新卸载Pytorch


原创文章,转载请注明 :使用conda/pip安装pytorch 0.3.1教程(mac/windos/linux) - pytorch中文网
原文出处: https://ptorch.com/news/145.html

 

<think>我们正在回答用户的问题:如何在树莓派上使用Miniconda安装PyTorch。 根据之前的引用,我们有以下信息: 引用[2]提到:Raspberry Pi 4B,Miniconda 4.9.2,Python 3.7.10安装PyTorch版本为1.7.1,torchvision 0.8.2,torchaudio 0.7.2。 引用[3]提供了一个安装命令:pip3 install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -f https://torch.maku.ml/whl/stable.html 但是注意,用户要求使用Miniconda安装,而引用[3]使用的是pip3。因此我们需要寻找Miniconda安装方式,或者说明在树莓派上通常使用pip安装PyTorch,因为官方不提供ARM架构的conda包。 经过分析,PyTorch官方并没有为树莓派(ARM架构)提供预编译的conda包。因此,在树莓派上通常使用pip安装PyTorch,即使使用Miniconda环境,也需要在conda环境中使用pip安装。 因此,步骤大致如下: 1. 安装Miniconda(如果尚未安装)。 2. 创建并激活一个conda环境(例如,使用Python 3.7)。 3.conda环境中使用pip安装PyTorch使用适用于树莓派的预编译包)。 根据引用[3]提供的命令,我们可以使用该命令来安装,但要注意该命令是使用pip3,所以我们在conda环境中执行pip install即可。 另外,引用[2]中使用的环境是Python 3.7.10,因此我们创建环境时指定Python版本为3.7。 具体步骤: 步骤1安装Miniconda - 下载适用于ARM架构的Miniconda安装脚本(例如,Miniconda3-py37_4.9.2-Linux-armv7l.sh)。 - 运行安装脚本:`bash Miniconda3-py37_4.9.2-Linux-armv7l.sh` - 按照提示完成安装,并初始化conda。 步骤2:创建conda环境(如果不想使用base环境) - 创建环境:`conda create -n pytorch_env python=3.7` - 激活环境:`conda activate pytorch_env` 步骤3安装PyTorch及相关库 - 在激活的环境中,使用pip安装。根据引用[3]的命令: pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -f https://torch.maku.ml/whl/stable.html - 注意:这个URL提供了适用于树莓派(ARM)的预编译wheel包。 步骤4:验证安装 - 运行Python,并尝试导入torch:`import torch` - 检查版本:`print(torch.__version__)` 注意:由于树莓派是ARM架构,所以不能使用官方的PyTorch conda包,只能通过pip安装专门为ARM编译的版本。 另外,引用[4]提到解压文件等,但这里我们不需要,因为我们是直接通过pip安装wheel。 因此,我们按照上述步骤编写回答。 同时,生成相关问题。</think>### 在树莓派上使用Miniconda安装PyTorch的步骤 由于树莓派采用ARM架构,无法直接通过`conda install`安装PyTorch(官方未提供ARM版Conda包)。需在Miniconda环境中使用`pip`安装专为ARM编译的PyTorch预编译包,步骤如下: #### 1. **安装Miniconda** ```bash # 下载适用于ARM的Miniconda安装脚本(Python 3.7版本) wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-armv7l.sh # 运行安装脚本 bash Miniconda3-py37_4.9.2-Linux-armv7l.sh ``` 安装时按提示操作,完成后初始化: ```bash source ~/.bashrc # 激活conda命令 ``` #### 2. **创建并激活Conda环境** ```bash conda create -n pytorch_env python=3.7 # 推荐Python 3.7(兼容性好) conda activate pytorch_env ``` #### 3. **通过pip安装PyTorch** 使用专为树莓派ARM架构编译的预编译包(以PyTorch 1.7.1为例): ```bash pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 \ -f https://torch.maku.ml/whl/stable.html # ARM专用源[^3] ``` > ⚠️ 注意: > - 必须指定 `-f` 参数指向ARM兼容的仓库(如 `https://torch.maku.ml` 或 `https://github.com/KumaTea/pytorch-aarch64`) > - 若安装失败,尝试降低版本(如 `torch==1.6.0`)[^4] #### 4. **验证安装** ```python python -c "import torch; print(torch.__version__)" # 应输出 1.7.1 python -c "import torch; print(torch.tensor([1,2,3]))" # 测试张量计算 ``` #### 常见问题解决 - **依赖缺失**:安装系统级依赖 ```bash sudo apt install libopenblas-dev libatlas-base-dev libjpeg-dev ``` - **安装超时**:使用国内pip镜像源 ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ... [原命令] ``` - **内存不足**:添加交换空间 ```bash sudo dphys-swapfile swapoff sudo nano /etc/dphys-swapfile # 修改 CONF_SWAPSIZE=2048 sudo dphys-swapfile setup && sudo dphys-swapfile swapon ``` > 关键提示:树莓派仅支持通过`pip`安装PyTorch的ARM预编译包,不可用`conda install`[^2][^3]。更高版本(如PyTorch 2.x)需自行从源码编译(耗时约8小时)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值