1010 Reports
签到,略。
1003 Express Mail Taking
简单贪心,先往右边走,然后逐步往左边走。
1007 CCPC Training Class
答案就是出现次数最多的字符出现的次数。
1011 3x3 Convolution
容易发现只有当 K1,1=1K_{1, 1} = 1K1,1=1 时输出和原矩阵相同,否则一定会收敛到 OOO。
1006 Robotic Class
题意:定义 nnn 个分段函数,每个函数形如
f(t,x)={
f(dt,0,ct,0x+bt,0)x≤at,0f(dt,1,ct,1x+bt,1)at,0<x≤at,1⋮f(dt,kt−1,ct,kt−1x+bt,kt−1)at,kt−2<x≤at,kt−1f(dt,kt,ct,ktx+bt,kt)at,kt−1<x f(t, x) = \begin{cases} f\left(d_{t, 0}, c_{t, 0}x +b_{t, 0}\right)& x \le a_{t, 0} \\ f\left(d_{t, 1}, c_{t, 1}x +b_{t, 1}\right) & a_{t, 0}<x \le a_{t, 1} \\ & \vdots \\ f\left(d_{t, k_t - 1}, c_{t, k_t - 1}x +b_{t, k_t - 1}\right) & a_{t, k_t - 2}<x \le a_{t, k_t - 1} \\ f\left(d_{t, k_t}, c_{t, k_t}x +b_{t, k_t}\right) & a_{t, k_t - 1}<x \\ \end{cases} f(t,x)=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧f(dt,0,ct,0x+bt,0)f(dt,1,ct,1x+bt,1)f(dt,kt−1,ct,kt−1x+bt,kt−1)f