378.有序矩阵中第K小的元素

本文介绍了一种高效算法,用于在升序排列的 nxn 矩阵中寻找第 k 小的元素。通过使用二分查找和上界函数,算法能在 O(n log C) 时间复杂度内解决问题,其中 C 是矩阵中最大元素与最小元素的差值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第k小的元素。
请注意,它是排序后的第k小元素,而不是第k个元素。

示例:

matrix = [
   [ 1,  5,  9],
   [10, 11, 13],
   [12, 13, 15]
],
k = 8,
返回 13。

说明: 
你可以假设 k 的值永远是有效的, 1 ≤ k ≤ n2 。

class Solution {
public:
    int kthSmallest(vector<vector<int>>& matrix, int k) {
        int left = matrix[0][0], right = matrix.back().back();
        while (left < right) {
            int mid = left + (right - left) / 2, cnt = 0;
            for (int i = 0; i < matrix.size(); ++i) {
                cnt += upper_bound(matrix[i].begin(), matrix[i].end(), mid) - matrix[i].begin();
            }
            if (cnt < k) left = mid + 1;
            else right = mid;
        }
        return left;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值