算法模板之最近公共祖先问题(LCA)

本文提供两种模板:一种用于解决最近公共祖先问题,通过预处理实现快速查询;另一种用于求解树上两点间的最短路径,适用于动态场景。两篇模板均详细展示了算法原理与实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

poj1330

最近公共祖先问题模板:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<string>
#include<vector>
#define N 30000
using namespace std;
int id[N],vis[N],depth[N],in[N],dp[N][20],k;

vector<int>G[N];

int Min(int i,int j)
{
    if(depth[i]<=depth[j])
        return i;
    return j;
}

void rmq_init(int n)
{
    for(int i=1; i<=n; i++)
        dp[i][0]=i;
    for(int j=1; (1<<j)<=n; j++)
        for(int i=1; i+(1<<j)-1<=n; i++)
            dp[i][j]=Min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}

void dfs(int v,int d)
{
    id[v]=k;
    vis[k]=v;
    depth[k]=d;
    k++;
    for(int i=0; i<G[v].size(); i++)
    {
        dfs(G[v][i],d+1);
        vis[k]=v;
        depth[k]=d;
        k++;
    }
}

void init(int root,int n)
{
    k=1;
    dfs(root,0);
    rmq_init(n*2-1);
}

int query(int l,int r)
{
    int k=(int)(log10(r-l+1)/log10(2.0));
    return Min(dp[l][k],dp[r-(1<<k)+1][k]);
}

int main()
{
    int t,n,a,b,x,y;
    cin>>t;
    while(t--)
    {
        for(int i=0; i<N; i++)
            G[i].clear();
        memset(in,0,sizeof(in));
        cin>>n;
        for(int i=1; i<n; i++)
        {
            scanf("%d%d",&a,&b);
            G[a].push_back(b);
            in[b]=1;
        }
        int i;
        for(i=1; i<=n; i++)
            if(in[i]==0)
                break;
        init(i,n);
        cin>>x>>y;
        int ans=query(min(id[x],id[y]),max(id[x],id[y]));
        printf("%d\n",vis[ans]);
    }
    return 0;
}


poj1986


求解树上两点相距的最近距离模板:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<string>
#include<vector>
#define N 40010
using namespace std;
int vis[2*N],depth[2*N],id[N],dis[N],dp[N*2][20],k;

struct node
{
    int to,w;
};

vector<node>G[N];

int Min(int a,int b)
{
    if(depth[a]<=depth[b])
        return a;
    return b;
}

void rmq_init(int n)
{
    for(int i=1; i<=n; i++)
        dp[i][0]=i;
    for(int j=1; (1<<j)<=n; j++)
        for(int i=1; i+(1<<j)-1<=n; i++)
            dp[i][j]=Min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}

void dfs(int v,int p,int d)
{
    id[v]=k;
    vis[k]=v;
    depth[k]=d;
    k++;
    for(int i=0; i<G[v].size(); i++)
    {
        if(G[v][i].to!=p)
        {
            dis[G[v][i].to]=dis[v]+G[v][i].w;
            dfs(G[v][i].to,v,d+1);
            vis[k]=v;
            depth[k]=d;
            k++;
        }
    }
}

void init(int n)
{
    k=1;
    dfs(1,-1,0);
    rmq_init(2*n-1);
}

int query(int l,int r)
{
    int k=(int)(log10(r-l+1)/log10(2.0));
    int num=Min(dp[l][k],dp[r-(1<<k)+1][k]);
    return vis[num];
}

int main()
{
    int n,m,a,b,c,q,x,y;
    char ch[10];
    while(cin>>n>>m)
    {
        for(int i=0; i<N; i++)
        {
            G[i].clear();
            id[i]=0;
            dis[i]=0;
        }
        for(int i=0; i<m; i++)
        {
            scanf("%d%d%d%s",&a,&b,&c,ch);
            node nd;
            nd.to=b,nd.w=c;
            G[a].push_back(nd);
            nd.to=a,nd.w=c;
            G[b].push_back(nd);
        }
        init(n);
        cin>>q;
        while(q--)
        {
            scanf("%d%d",&x,&y);
            int ans=query(min(id[x],id[y]),max(id[x],id[y]));
            printf("%d\n",dis[x]+dis[y]-2*dis[ans]);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值