
deepseek
文章平均质量分 50
非ban必选
黑,真他妈的黑
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
spring-ai-alibaba动态 Prompt 最佳实践
Spring AI Alibaba 使用 Nacos 的配置中心能力来动态管理 AI 应用的 Prompt。以此来实现动态更新 Prompt 的功能。原创 2025-07-30 09:31:21 · 404 阅读 · 0 评论 -
使用 Spring AI Alibaba MCP 结合 Nacos 实现企业级智能体应用
1、Spring AI Alibaba MCP 结合 Nacos 服务注册中心,为企业级智能体应用提供了强大的基础架构支持。这一组合解决方案主要围绕三条核心技术线展开,实现了从服务注册、工具代理到服务发现的完整闭环,为企业级 AI 应用部署提供了坚实基础。2、原创 2025-07-29 16:49:26 · 497 阅读 · 0 评论 -
spring-ai之工具调用(Tool Calling)
工具调用(Tool Calling)”或“函数调用”允许大型语言模型(LLM)在必要时调用一个或多个可用的工具,这些工具通常由开发者定义。工具可以是任何东西:网页搜索、对外部 API 的调用,或特定代码的执行等。LLM 本身不能实际调用工具;相反,它们会在响应中表达调用特定工具的意图(而不是以纯文本回应)。然后,应用程序应该执行这个工具,并报告工具执行的结果给模型。当 LLM 可以访问工具时,它可以在合适的情况下决定调用其中一个工具,这是一个非常强大的功能。方法工具和函数工具。原创 2025-07-16 17:46:32 · 775 阅读 · 0 评论 -
spring-ai-alibaba官方 Playground 示例之联网搜索代码解析2
1.1 查询重写:QueryTransformer 查询改写:因为用户的输入通常是片面的,关键信息较少, 不便于大模型理解和回答问题。1.2 扩充问题:MultiQueryExpander 查询扩展:将用户 query 扩展为多个语义不同的变体以获得不同视角,有助于检索额外的上下文信息并增加找到相关结果的机会。1、Pre-Retrieval 增强和转换用户输入,使其更有效地执行检索任务,解决格式不正确的查询、query 语义不清晰、或不受支持的语言等。实例化查询重写和查询扩展。原创 2025-07-15 11:05:38 · 297 阅读 · 0 评论 -
spring-ai-alibaba之Rag 增强问答质量
1、RAG(Retrieval-Augmented Generation,检索增强生成) ,该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力2、RAG 模块化案例RAG 可以由一组模块化组件构成 《Rag 模块化》,结构化的工作流程保障 AI 模型生成质量。原创 2025-07-15 09:49:03 · 636 阅读 · 0 评论 -
spring-ai-alibaba官方 Playground 示例之联网搜索代码解析
1、联网搜索controller。3、查询重写和联网搜索提示模板。5、实例化查询重写和多查询扩展。原创 2025-07-14 17:33:51 · 253 阅读 · 0 评论 -
基于 Dify 工作流生成 SAA 工程
开发者只需编写或从dify等平台导出一段 YAML/JSON DSL,就能一键生成包含文档抽取、HTTP 调用、RAG 检索、LLM 推理等节点的 Spring Boot + Spring AI Alibaba Graph项目。在启动 Graph Studio 后,当前可以调用如下 HTTP 请求生成,该请求将自动生成 Spring AI Alibaba 工程的 zip 包。模块,提供从自定义 DSL → Java 源码 → 可运行。模块,快速生成 Spring AI Alibaba 工程。原创 2025-07-10 11:33:21 · 316 阅读 · 0 评论 -
Spring AI Alibaba Graph使用案例多节点并行执行
1、pom.xml这里使用 1.0.0.3-SNAPSHOT。2、configOverAllState 中存储的字段expander_number:扩展的数量expander_content:扩展的内容translate_language:翻译的目标语言translate_content:翻译的内容collector_next_node:CollectorNode的下一个节点名expand_status:扩展节点执行状态translate_status: 翻译节点执行状态。原创 2025-07-09 14:48:24 · 481 阅读 · 0 评论 -
Spring AI Alibaba Graph使用案例人类反馈
1、Spring AI Alibaba Graph 是社区核心实现之一,也是整个框架在设计理念上区别于 Spring AI 只做底层原子抽象的地方,Spring AI Alibaba 期望帮助开发者更容易的构建智能体应用。基于 Graph 开发者可以构建工作流、多智能体应用。原创 2025-07-08 11:24:38 · 725 阅读 · 0 评论 -
spring-ai-alibaba官方 Playground 示例
示例使用 Spring AI Alibaba 开发,可以体验聊天机器人、多轮对话、图片生成、多模态、工具调用、MCP集成、RAG知识库等所有框架核心能力。阿里云信息查询服务iqs-search api-key对应环境变量 IQS_SEARCH_API_KEY。阿里云百炼api-key 对应环境变量 AI_DASHSCOPE_API_KEY。百度云翻译sk对应环境变量 BAIDU_TRANSLATE_SECRET_KEY。百度云地图ak对应环境变量 BAIDU_MAP_API_KEY。原创 2025-06-30 16:32:02 · 521 阅读 · 0 评论 -
spring-ai集成langfuse
controller代码。5、langfuse地址。3、service代码。原创 2025-05-02 19:30:56 · 638 阅读 · 0 评论 -
浅谈AI Agent 演进之路
1、了解下 AI Agent 的定义AI Agent(人工智能代理)简单来说是一种能够感知环境、进行决策和执行动作的智能实体。与传统的人工智能相比,AI Agent 具备独立思考和调用工具逐步完成目标的能力。例如:当要求 AI Agent 帮助下单外卖时,它可以自主调用应用程序、选择餐品、提交订单并完成支付,而无需人为指定每一步操作。AI Agent 的主要能力组成部分包括:1、逻辑推理能力和行动能力(Planning)1.1、子任务分解:将复杂的任务拆解为更小的、可管理的子目标,以便高效处理。原创 2025-04-25 11:28:20 · 1052 阅读 · 0 评论 -
spring-ai使用Xinference(openai)和milvus
4、初始化插入数据到milvus。6、collection结构如下。原创 2025-04-24 21:33:32 · 508 阅读 · 0 评论 -
spring-ai使用Document存储至milvus的数据结构
2、初始化的milvus的collection结构如下。原创 2025-04-24 17:03:00 · 338 阅读 · 0 评论 -
suna安装指北
【代码】suna安装指北。原创 2025-04-24 10:19:09 · 1392 阅读 · 0 评论 -
docker部署Supabase
1、是一个开源的后端即服务(Backend-as-a-Service,BaaS)平台,类似于 Firebase,但基于开源技术栈。它为开发者提供了实时数据库、身份验证、存储和 Edge 函数等功能。Supabase 的核心基于2、 启动 Supabase 服务, 此命令会启动所有服务,并在后台运行。原创 2025-04-24 10:09:12 · 798 阅读 · 0 评论 -
spring-ai之Advisors API
通过利用 Advisors API,开发人员可以创建更复杂、可重用和可维护的 AI 组件。是关键的 advisor 方法,通常执行诸如检查未密封的 Prompt 数据、自定义和扩充 Prompt 数据、调用 advisor chain 中的下一个实体、选择性地阻止请求、检查聊天完成响应以及引发异常以指示处理错误等作。主要优势包括封装重复的生成式 AI 模式、转换发送到大型语言模型 (LLM) 和从大型语言模型 (LLM) 发送的数据,以及提供跨各种模型和用例的可移植性。提供唯一的 advisor 名称。原创 2025-04-23 09:28:00 · 500 阅读 · 0 评论 -
Spring AI Alibaba Graph基于 ReAct Agent 的天气预报查询系统
1、在本示例中,我们仅为 Agent 绑定了一个天气查询服务,接收到用户的天气查询服务后,流程会在 AgentNode 和 ToolNode 之间循环执行,直到完成用户指令。示例中判断指令完成的条件(即 ReAct 结束条件)也很简单,模型 AssistantMessage 无 tool_call 指令则结束(采用默认行为)。4、天气接口 tool。原创 2025-04-21 17:16:21 · 922 阅读 · 0 评论 -
spring-ai-alibaba使用Agent实现智能机票助手
依赖模型的决策是可靠的吗?AI 智能体可以帮助应用理解用户需求并作出决策,但是它没法代替应用完成决策的执行,决策的执行还是要由应用自己完成,这一点和传统应用并没有区别,不论是智能化的还是预先编排好的应用,都是要由应用本身去调用函数修改数据库记录实现数据持久化。通过 Spring AI 框架,我们可以将模型的决策转换为对某个具体函数的调用,从而完成机票的最终改签或者退票动作,将用户数据写入数据库,这就是我们前面提到的 Function Calling 模式。5、机票信息、机票类型、机票状态、等相关实体类。原创 2025-04-15 21:30:17 · 988 阅读 · 0 评论 -
Spring-AI-alibaba 结构化输出
完整controller。原创 2025-04-14 20:29:28 · 303 阅读 · 0 评论 -
Spring AI高级RAG功能查询重写和查询翻译
查询重写是RAG系统中的一个重要优化技术,它能够将用户的原始查询转换成更加结构化和明确的形式。这种转换可以提高检索的准确性,并帮助系统更好地理解用户的真实意图。查询翻译是RAG系统中的一个实用功能,它能够将用户的查询从一种语言翻译成另一种语言。这对于多语言支持和跨语言检索特别有用。Spring AI提供了。这种转换不仅有助于系统检索到更相关的文档,还能帮助生成更全面和专业的回答。// 创建查询翻译转换器,设置目标语言为中文。来实现查询重写功能。:将模糊的问题转换为具体的查询点。Spring AI提供了。原创 2025-04-13 13:29:05 · 353 阅读 · 0 评论 -
Spring AI高级RAG功能 Multi Query Expansion (多查询扩展)
1、多查询扩展是提高RAG系统检索效果的关键技术。在实际应用中,用户的查询往往是简短且不完整的,这可能导致检索结果不够准确或完整。Spring AI提供了强大的多查询扩展机制,能够自动生成多个相关的查询变体,从而提高检索的准确性和召回率。在这个过程中,系统会自动生成多个相关的查询变体,例如当用户查询”请提供几种推荐的装修风格?”时,系统会生成多个不同角度的查询。这种方式不仅提高了检索的全面性,还能捕获用户潜在的查询意图。原创 2025-04-13 11:05:36 · 436 阅读 · 0 评论 -
dify使用外部知识库RAGFlow
API Endpoint 是RAGFlow的 API服务器 加上 /api/v1/dify。2、创建RAGFlow api key, 记住 API服务器地址 后面会用到。4、dify创建知识库 使用RAGFlow的知识库。下图是RAGFlow的知识库 id。1、ragflow 创建知识库。3、dify 配置外部知识库。原创 2025-04-10 14:10:54 · 294 阅读 · 0 评论 -
docker安装langfuse
5、使用spring-ai集成 根据。2、github下载langfuse。3、docker-compose文件。文档实现目前还有问题,待解决。原创 2025-04-10 09:48:03 · 337 阅读 · 0 评论 -
docker安装RAGFLOW
2、修改 .env文件 ,把端口冲突的改掉。1、从github上下载。原创 2025-04-10 09:35:09 · 450 阅读 · 0 评论 -
docker安装Xinference
ollama 由于没有rerank模型。docker-compose文件。原创 2025-04-10 08:55:29 · 310 阅读 · 0 评论 -
spring-ai-openai调用Xinference1.4.1报错
这两个Http请求的使用的是jdk自带的 jdk.internal.net.http.HttpClientImpl,默认会使用http2。发现问题,spring-ai 升级为Http2了,百度下貌似 Xinference 不支持 http2。4、修改 OpenAiApi 类 ,下载spring-ai 源码 ,找到。spring-ai-openai的pom文件添加以下依赖。3、使用Wireshark 抓包 ,发现问题。spring-ai-openai 使用如下。spring-ai调用抓包如下。原创 2025-04-07 21:43:33 · 1459 阅读 · 0 评论 -
spring-ai-alibaba第九章使用Milvus构建大模型RAG应用
4、初始化 ChatClient。原创 2025-04-05 12:50:31 · 533 阅读 · 0 评论 -
spring-ai-alibaba第八章使用searxng构建大模型联网搜索应用
1、searxng安装配置 详见2、本文介绍如何使用 Spring AI Alibaba 构建大模型联网搜索应用结合模块化 RAG(Module RAG)和信息检索服务(SearXNG)赋能大模型。原创 2025-04-04 14:29:45 · 1050 阅读 · 4 评论 -
spring-ai-alibaba第七章阿里dashscope集成RedisChatMemory实现对话记忆
2、spring-ai 大模型应用程序通过RedisChatMemory 实现对话记忆。对 RedisChatMemory进行简单改造,改造后的代码如下。然后用maven编译安装,记下安装后的版本,此时我用的版本是。1、RedisChatMemory的实现。原创 2025-04-03 12:37:14 · 659 阅读 · 0 评论 -
spring-ai-alibaba第六章阿里dashscope集成mcp百度翻译tools
6、spring-ai 大模型应用程序 mcp客户端, 集成了mcp天气查询工具和 mcp百度翻译工具。3、百度翻译mcp服务端 百度appid合key配置文件类。4、百度翻译 mcp 服务端 百度翻译service类。2、百度翻译mcp服务端yml配置文件。1、百度翻译mcp服务端 pom文件。5、百度翻译 mcp服务端启动类。天气查询 controller。百度翻译controller。原创 2025-04-02 21:16:45 · 591 阅读 · 0 评论 -
spring-ai-alibaba第五章阿里dashscope集成mcp远程天气查询tools
1、之前实现过百度翻译的tools,什么是mcp,个人理解 这里在代码的表现形式上就是把工具和AI程序分开,AI程序通过远程调用mcp-tools服务端实现远程tools的调用。集成阿里大模型,是mcp客户端,通过调用mcp服务端实现天气查询,等于把集成在程序中的tools分离出,通过远程调用的方式来调用tools。远程tools,实现方式类似本地tools,此处实现天气tools。2、MCP服务端 天气查询工具实现代码。mcp服务端 天气查询 tools。4、启动 mcp服务端和mcp客户端。原创 2025-04-02 16:37:28 · 986 阅读 · 1 评论 -
spring-ai-alibaba第四章阿里dashscope集成百度翻译tool
2、yml文件,由于本机ollama上的模型支持的function call 时好时坏,所以使用阿里的。dashscope的qwq-plus模型。3、百度翻译的appid和key。5、翻译 controller。4、百度翻译的tool。6、不带工具测试如下。原创 2025-04-02 11:07:35 · 417 阅读 · 0 评论 -
spring-ai-alibaba第三章ollama集成Tool
此时就需要大模型的 function call 的功能,也就是 给大模型加上工具。controller代码如下。请告诉我现在北京时间几点了。1、当我们使用大模型问。原创 2025-04-01 19:46:33 · 557 阅读 · 0 评论 -
spring-ai-alibaba第二章ollama集成EmbeddingModel
2、ollama 需又向量模型,application.yml 内容如下。原创 2025-04-01 15:51:48 · 382 阅读 · 0 评论 -
spring-ai-alibaba第一章ollama集成
2、application.yml 内容如下。3、使用ChatClient 实现模型调用。4、使用ChatModel代码如下。1、pom文件内容如下。原创 2025-04-01 11:33:38 · 261 阅读 · 0 评论 -
Langchain4j实现本地RAG和联网查询
1、代码使用openai公网模型、ollama本地模型和本地部署的searxng搜索引擎。SearxngSearchDemo,控制台输入问题如下。原创 2025-03-27 15:14:47 · 713 阅读 · 0 评论 -
dify安装searXNG插件
1、搜索并安装2、授权。原创 2025-03-23 18:54:39 · 1852 阅读 · 1 评论 -
anythingLLM结合searXNG实现联网搜索
4、修改 Caddyfile,防止 caddy 默认配置的 80端口冲突。格式,在使用网络爬虫或其它形式的分析器调用 API 时,希望返回。1、docker-compose 部署searXNG。7、anythingLLM配置 websearch。3、执行下面命令,生成 secret key。5、docker-compose配置文件。6、配置 settings.yml。格式,这时就需要修改返回格式。项目默认的搜索返回的格式为。2、修改 .env文件。原创 2025-03-23 13:33:16 · 1029 阅读 · 0 评论 -
dify创建第一个Agent
由于deepseek-R1本地化部署时还不支持,所以使用 qwq模型。1、首先LLM模型必须支持 Function Calling。4、测试 当未添加时间工具时。2、创建空白 Agent。3、为Agent添加工具。原创 2025-03-23 00:08:21 · 503 阅读 · 0 评论