终于找到了!AI学习路线图——从零基础到就业

导读:极简可行,少即是多。

作者:华章郭老师

来源:大数据DT(ID:hzdashuju)

本指南为不擅长数学的你私人订制,同时适用于:

  • 想要学习AI的学生、程序员、研究人员或爱好者;

  • 想转行AI的读者;

  • 想把AI运用到本职工作的读者。

新手自学三大误区:

  • 贪多求全收集资料,却一份也没看完;

  • 想通过脑图了解“系统入门路线”,却只看到满屏的陌生名词,还是不知该怎么学;

  • 翻开AI技术书,第一眼就被公式“劝退”。

如果你也一样,在初学入门时踩到这些“坑”,那么继续往下看吧。

路线图制定原则:少即是多

最大化节约你的时间和精力,优先向重点发力,捡西瓜而不是捡芝麻。

路线图分为3个阶段:1. 零基础入门,2. 基础进阶,3. 工作应用

  1. 在入门阶段,你需要的不是大量资料的罗列,而是一个简单可行的引导——只学重点,建立信心。所以小编只推荐4本书,而且不必全部看完;

  2. 一旦真正入门,消除了迷茫,这时再向你推荐全面和深入的内容,才有帮助;

  3. 达到工作水平后,你自己就会知道怎样学了,同时也已融入这个圈子。这时推荐一些你会在工作中用到的参考书,你自行选择即可。

  4. 路线图中推荐的书,为了方便新手理解,对每本书都只用直截了当的一句话去描述其特点,把阅读成本降到最低。已经入门或处在行业内的读者,也可以通过路线图来查缺补漏,让自己升值。

先上图,然后看说明:

  • 高清大图下载关注大数据DT,在后台对话框回复AI路线图

第一阶段:零基础入门(3-6个月)

新手应首先通过少而精的学习,看到全景图,建立大局观。通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。

入门路线上,建议先掌握机器学习的基础(传统模型)后,再开始学深度学习。原因有二:

  • 一来机器学习基础是“以不变应万变”的内功。一旦掌握了基础,你对深度学习等进阶技术,以及不断变化的新技术都可以触类旁通,节省学习成本;

  • 二来深度学习对计算机硬件要求高,不适合新手用个人电脑自学。

但是有个问题:机器学习相对深度学习来说,对数学基础要求稍高,这该怎么解决呢?

答案就在路线图的第一本书里——《机器学习算法的数学解析与Python实现》

机器学习算法的数学解析与Python实现

作者:莫凡

推荐语:看得懂、学得会、不枯燥的机器学习入门书。用白话帮你从生活案例中理解算法,发现算法的乐趣,再把算法应用到机器学习中,让你零基础掌握算法精髓,快速进入AI开发领域。

这本书堪称小白福音!你别看它的书名挺长,但作者可是用视频弹幕般的解说风格,带你零基础入门的。至于内容有多么的多通俗易懂,你看一下作者写的文章就知道了。(点击查看木羊专栏

你要的机器学习全景图,也就在这本书里。

学习理论基础的同时,通过实践带给自己正反馈,才能持续的学下去。人工智能入门用Python你肯定知道,推荐《Python程序设计:人工智能案例实践》,这是结合AI实例入门Python非常好的一本。即使你将来成为机器学习工程师后,也能把这本书放在手边备查。

Python程序设计:人工智能案例实践

作者:保罗·戴特尔

推荐语:极简入门Python和AI,读这一本就够了!538个实例帮你掌握交互式IPython解释器和JupyterNotebook并应用Python实践人工智能项目。

掌握了基本的Python语法后,就可以实践机器学习了,推荐2本“四大名著”足矣。特别是豆瓣满分的蜥蜴书。推荐理由可以看这篇文章:为什么“蜥蜴书”是机器学习入门必读书?

机器学习实战

作者:奥雷利安·杰龙

点击上方封面了解及购买

推荐语:“美亚”人工智能畅销榜首图书,基于TensorFlow2全面升级,内容增加近一倍!Keras之父鼎力推荐,从实践出发,手把手教你从零开始搭建起一个神经网络。

Python机器学习

作者:塞巴斯蒂安·拉施卡

推荐语:深度学习“四大名著”之一、美亚畅销书全新升级,《ACM计算评论》年度最佳奖图书,Python机器学习入门教程。

“四大名著”绝非浪得虚名,到你入门进阶之后,会更加领会这2本书的价值。

上述4本书在手,你的零基础入门之路可以说是无死角了,你只需要踏下心来,按书中的内容按部就班动手做,切记,一定要动手实践!

第二阶段:基础进阶(3-6个月)

熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。

这一阶段,还可以继续实践2本“四大名著”。在遇到一些新概念时,需要提升数学基础,此时推荐阅读《机器学习算法》《机器学习中的概率统计:Python语言描述》来集中理解机器学习中的数学和算法。可查看文章《终于有人把条件概率和贝叶斯公式讲明白了》。

机器学习算法

作者:安柯·莫特拉

推荐语:麻省理工学院“机器学习算法”课程教材,介绍可解释的机器学习,探索理论计算机科学和机器学习这两个领域能够互相借鉴的知识。

机器学习中的概率统计

作者:张雨萌

推荐语:GitChat畅销专栏全面升级!系统讲解机器学习中的概率统计核心知识和计算技巧,利用Python工具和典型案例,帮你高效构建机器学习概率统计理论与实践体系。

此时,你可以进入“深水区”了,深度学习理论入门只看这本“蒲公英书”就够了,配套素材非常丰富,内容也绝对够新,让你形成系统的知识脉络。可查看文章:《深度学习如何入门?这本“蒲公英书”再适合不过了!豆瓣评分9.5!》。

神经网络与深度学习

作者:邱锡鹏

推荐语:复旦大学邱锡鹏教授力作,周志华、李航联袂推荐!深受好评的深度学习讲义“蒲公英书”正式版!系统整理深度学习的知识体系,由浅入深地阐述深度学习的原理、模型及方法。

实践方面推荐你阅读业内公认的口碑好书《Python深度学习:基于PyTorch》,如果想掌握另一种热门框架TensorFlow的话,再回去看两本“四大名著”就好,版本都是最新。

Python深度学习:基于PyTorch

作者:吴茂贵 郁明敏 杨本法 李涛 张粤磊 

推荐语:业内公认的深度学习入门实战好书!资深AI专家20余年工作经验总结,从工具、技术、算法、实战4个维度全面讲解深度学习,重点突出、循序渐进、用图说话,配学习PPT。

深度学习领域当下最热门的“Embedding(嵌入)”和“GAN(生成对抗网络)”也都有最新专著,两本书都是经过时间考验的,会对你深入实践帮助很大。可查看文章:《终于有人把生成对抗网络(GAN)讲明白了》。

深入浅出Embedding

作者:吴茂贵 王红星

推荐语:北京智源人工智能研究院院长、微软中国首席技术官、亚马逊云上海AI研究院院长、中国计算机学会副理事长推荐。

至于系统能力,属于“九阳神功”级别的“内功”。虽然有些人系统能力学得不好也找到了工作,但你如果想有长远发展,还是要抽时间“回炉”。大厂面试也常考系统能力的问题,可见其重要性。系统能力方面最好的书,看过图中这3本,就可以了。可查看文章:《“智能计算系统” 开讲啦!》。

智能计算系统

作者:陈云霁 李玲 李威 郭崎 杜子东

推荐语:深度学习处理器芯片研究的开拓者陈云霁领衔,中科院计算所、软件所的专家学者倾心写就。智能领域系统能力培养大成之作!

第三阶段:工作应用

这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。

这个阶段,只提醒1点:工程应用绝对没有学术理论的AlphaGo那么炫酷,想要快速避坑,了解技术商业化中的取舍,除了工作实践之外,推荐你阅读“冰山书”:《机器学习:软件工程方法与实现》,从工程上再刷新一次机器学习,避开新手犯错的“重灾区”。可查看文章:《先放下李航和周志华,从工程上刷新一次机器学习》。

机器学习:软件工程方法与实现

作者:张春强 张和平 唐振

推荐语:大型金融集团专家撰写,基于Python,将软件工程思想、方法、工具和策略应用到机器学习中,提供高质量代码设计、可复用源码和工业应用框架。

这里赠送一发图里没有的小彩蛋:如果你对金融科技方向感兴趣却又是个外行的话,这本《金融智能:AI如何为银行、保险、证券业赋能》也是为你私人订制的。可查看文章:《未来,金融业或颠覆于人工智能?》。

结语

现在的你已经进入机器学习工程师这条“伟大的航路”了,也许修行之路才刚刚开始。技术发展日新月异,练好“内功”才能走的更远。可查看文章:《深入理解计算机系统》漫游指南

最后再给部分“看不下去书”的同学一个可行的建议——微习惯。每天只抽出5分钟时间看书,坚持三周后,你再来告诉我,是否养成了阅读的习惯?

好了,菜已炒好并端到你面前。筷子在这,吃不吃看你了。

以上部分图书正在当当5折限时优惠

长按二维码

发现更多AI学习好书


一直看到这里的你,一定是爱读书的人。欢迎加入大数据读书会微信群,结识更多同行业小伙伴,我们将不定期在群里送书!未来还有更多福利等你认领!加数据叔微信DoctorData,备注读书会,拉你入群!

干货直达????

更多精彩????

在公众号对话框输入以下关键词

查看更多优质内容!

PPT | 读书 | 书单 | 硬核 | 干货 讲明白 | 神操作

大数据 | 云计算 | 数据库 | Python | 爬虫 | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 1024 | 数学 | 算法 数字孪生

据统计,99%的大咖都关注了这个公众号

????

<think>首先,用户的问题是:“我想学习软件测试的具体路线 请问软件测试学习路线 从零开始 初学者指南”。这是一个关于软件测试学习路径的请求。 系统级指令要求: - 所有行内数学表达式使用$...$格式。 - 独立公式使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如:[^1]。 用户可见层要求: - 回答结构清晰,帮助用户逐步解决问题。 - 尽量保证回答真实可靠。 - 参考提供的引用内容。 提供的引用内容: - [^1]: 关于嵌入式开发的学习路径。 - [^2]: 关于Python自动化测试和软件测试的学习路线,包括版本控制、持续集成等。 - [^3]: 关于Java学习路线。 虽然这些引用不是直接针对软件测试的,但[^2]特别提到了软件测试的学习路线,包括Python自动化测试、版本控制、持续集成等。我应该基于这些信息构建回答,因为用户的问题是关于软件测试的。 用户的问题是:“我想学习软件测试的具体路线”,所以我需要提供一个从零开始的初学者指南。 结构化回答: 1. **引言**:简要介绍软件测试的重要性。 2. **基础阶段**:覆盖初学者需要掌握的基础知识。 3. **进阶阶段**:包括自动化测试、工具等。 4. **实践项目**:强调实践的重要性。 5. **总结**:鼓励用户。 6. **相关问题**:生成相关问题。 参考引用[^2]: - Python编程入门到精通。 - 版本控制软件(如SVN或Git)。 - 持续集成(如Jenkins)。 - 知识架构体系图。 引用[^1]提到“从零开始快速学习”和“实践项目”,这可以借鉴。 引用[^3]提到Java学习路线,但用户的问题更偏向于软件测试,可能包括编程语言如Python或Java。 软件测试学习路线通常包括: 1. 基础知识:软件开发生命周期、测试类型(单元、集成、系统、验收)、测试方法(黑盒、白盒)。 2. 编程基础:Python或Java,因为自动化测试常用这些语言。 3. 测试工具:如Selenium for Web测试,Appium for mobile,JUnit/TestNG for unit testing。 4. 版本控制:Git。 5. 持续集成/持续部署(CI/CD):Jenkins。 6. 实践:通过项目应用知识。 生成相关问题: - 基于用户问题,生成3-5个相关问题。 使用中文回答。 确保结构清晰: - 分步骤或分阶段。 - 使用标题或小标题。 在回答中,自然地添加引用标识。例如,如果提到某个概念来自引用,就在末尾加[^2]。 最终回答结构: 1. 介绍软件测试学习路径。 2. 详细阶段: - 基础概念 - 编程技能 - 测试工具 - 版本控制和CI/CD - 实践项目 3. 总结。 4. 相关问题。 数学表达式:用户问题没有数学内容,所以可能不需要。但如果提到任何数学概念,确保使用正确格式。例如,如果讨论测试覆盖率公式,可以用$...$。 现在,草拟回答。</think>### 软件测试学习路线:从零开始的初学者指南 软件测试是确保软件质量的关键环节,涉及验证和确认软件功能是否符合需求。对于初学者,从零开始学习需要一个结构化路径,包括基础概念、编程技能、工具使用和实践项目。以下是基于行业标准和参考资源的完整学习路线,我将分阶段引导您逐步掌握。整个路线大约需要6-12个月,具体进度取决于您的学习投入。 #### 阶段1: 基础概念和理论(1-2个月) 作为初学者,先从软件测试的核心理论入手,这能帮助您理解测试的本质和重要性。 - **软件开发生命周期(SDLC)**:学习软件从需求分析到部署的全过程,重点理解测试在不同阶段的作用(如需求评审、设计测试用例)。 - **测试类型和方法**:掌握黑盒测试(关注功能输入输出)、白盒测试(关注代码内部逻辑)、以及常见测试类型如单元测试、集成测试、系统测试和验收测试。例如,单元测试覆盖率可以用公式表示:$ \text{覆盖率} = \frac{\text{已覆盖代码行数}}{\text{总代码行数}} \times 100\% $。 - **测试文档**:学习编写测试计划、测试用例和缺陷报告。推荐资源:ISTQB(国际软件测试资格委员会)基础认证教材,这是行业标准入门材料[^2]。 这一阶段的目标是建立理论框架,避免直接跳入工具操作。每天学习1-2小时,通过在线课程(如Coursera或B站免费教程)巩固知识。 #### 阶段2: 编程和自动化基础(2-3个月) 软件测试自动化是行业趋势,初学者需掌握一门编程语言和基本脚本编写。 - **编程语言选择**:Python是首选,因为它语法简单且广泛用于自动化测试。从基础语法开始(变量、循环、函数),逐步学习面向对象编程(OOP)。参考资源:Python官方教程或在线平台如Codecademy[^2]。Java也可作为备选,尤其适合企业级应用测试[^3]。 - **自动化测试入门**:学习使用Selenium(Web应用测试)或Appium(移动应用测试)框架。例如,用Python写一个简单测试脚本: ```python from selenium import webdriver driver = webdriver.Chrome() driver.get("https://example.com") assert "Example" in driver.title # 验证页面标题 driver.quit() ``` - **单元测试框架**:掌握JUnit(Java)或pytest(Python),用于编写和执行测试用例。例如,pytest测试函数示例: ```python def test_addition(): assert 1 + 1 == 2 # 简单断言测试 ``` 每天实践编码1小时,通过小项目(如测试一个计算器APP)应用所学。编程基础是自动化测试的基石,能显著提升测试效率[^2]。 #### 阶段3: 工具和进阶技能(2-3个月) 掌握常用工具和流程,提升测试专业度。 - **版本控制**:学习Git进行代码管理,包括基本命令(clone、commit、push)。GitHub或GitLab是实践平台,帮助团队协作[^2]。 - **持续集成/持续部署(CI/CD)**:使用Jenkins自动化测试流程。学习安装Jenkins、创建Job并集成测试脚本。例如,配置一个Job在代码提交后自动运行测试套件[^2]。 - **测试管理工具**:熟悉JIRA(缺陷跟踪)和TestRail(测试用例管理),这些在企业中广泛应用。 - **性能和安全测试**:进阶学习LoadRunner(性能测试)或OWASP ZAP(安全测试),但初学者可先聚焦功能测试。 这一阶段强调工具实操,推荐使用免费工具版本。每周投入10-15小时,通过模拟项目(如测试一个电商网站)积累经验。 #### 阶段4: 实践项目和职业发展(1-2个月) 理论学习需结合实践才能巩固。完成一个端到端项目: 1. **项目选择**:例如,测试一个开源Web应用(如WordPress)。 2. **实施步骤**:从需求分析→编写测试用例→执行手动测试→实现自动化脚本→集成CI/CD→生成测试报告。 3. **技能整合**:使用Git管理代码,Jenkins自动运行测试,确保覆盖率达到目标(如$ \text{覆盖率} \geq 80\% $)。 完成项目后,准备求职:构建作品集(GitHub仓库展示代码)、考取认证(如ISTQB)、并关注行业趋势(如AI在测试中的应用)。参考嵌入式开发的学习路径,实践是快速入门的核心[^1]。 ### 总结 软件测试学习路线从基础理论到自动化工具,再到项目实践,逐步构建技能树。作为初学者,坚持每日学习和编码是关键。软件测试领域充满机会,掌握这些技能不仅能提升就业竞争力,还能为转向QA工程师或测试架构师铺路[^2]。开始您的旅程吧——选择一个简单项目,今天就开始写第一行测试代码! ### 相关问题 1. 如何选择软件测试的编程语言:Python还是Java? 2. 软件测试中常见的自动化测试工具有哪些? 3. 软件测试工程师的薪资水平和职业发展路径如何? 4. 如何准备软件测试相关的认证考试(如ISTQB)? 5. 软件测试在敏捷开发中如何实施?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值