Python使用SQLite插入大量数据耗时问题

本文探讨了在Python中使用SQLite数据库时遇到的大规模数据插入耗时问题。通过显式使用事务、调整写同步设置(如将synchronous设为OFF),可以显著提高数据插入的效率,减少I/O操作带来的延迟。实验表明,这些方法有效减少了插入时间,提升了数据库性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

使用Python爬虫代理IP时,最先使用了sqlite作为存储ip数据库,sqlite简单、灵活、轻量、开源,和文件系统一样。而当大量插入爬取的数据时,出现了严重的耗时,查看一起资料后,发现:sqlite在每条insert都使用commit的时候,就相当于每次访问时都要打开一次文件,从而引起了大量的I/O操作,耗时严重。
下面是每次插入后,提交事务处理,每次插入的时间,单位是秒。

    def insert(self, sql, data):
        '''
        insert data to the table
        :param sql:
        :param data:
        :return:
        '''
        if sql is not None and sql != '':
            if data is not None</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值