经典聚类算法——Kmeans详解

本文详细介绍了KMeans聚类算法,这是一种常见的无监督学习方法,适用于将相似数据划分到同一类别。KMeans通过最小化样本到簇中心的距离平方和来确定最佳分类,算法包括随机选择初始簇类中心,计算样本归属,更新簇类中心等步骤。距离度量通常使用曼哈顿距离和欧式距离。KMeans的优点是简单快速,适用于密集、球状簇,但需要预设簇的数量,对初值敏感,且不适用于非凸形簇和大小差别大的簇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是聚类

Clustering (聚类)是常见的unsupervised learning (无监督学习)方法。

聚类的目的就是将大量数据中具有”相似”特征的数据或样本划分到同一个类别中

聚类模型建立在无类别标记的数据上,需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律

聚类模型会根据数据自身间的”距离”或”相似度”将他们划分成若干组,划分的基本原则就是使组内样本间距离最小化而组间距离最大化

常用的聚类算法如下:

二、kmeans算法基本原理

kmeans算法又称k均值算法,是最常用的聚类算法之一,它是基于点与点之间距离的相似度来计算最佳类别归属的方法,需要我们预先确定好聚类的类别数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白话机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值