实战案例——利用逻辑回归模型对乳腺癌数据集进行分类

该博客通过实例讲解如何使用逻辑回归对乳腺癌数据集进行分类。涉及数据预处理、特征提取、训练集与测试集划分、模型训练与参数调整,包括penalty和solver的选择,并对模型进行评估和持久化。最后在测试集上验证模型性能并可视化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、导入必要的函数库

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings  # 警告处理

from sklearn.linear_model.coordinate_descent import ConvergenceWarning  # 警告处理
from sklearn.model_selection import train_test_split  # 数据划分
from sklearn.externals import joblib # 模型保存与加载

设置字符集,防止中文乱码

mpl.rcParams['font.sans-serif'] = [u'simHei']
mpl.rcParams['axes.unicode_minus'] = False

拦截异常

warnings.filterwarnings(action = 'ignore', category = ConvergenceWarning)

2、读取数据集

path = './datas/breast-cancer-wisconsin.data'
names = ['id','Clump Thickness',
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白话机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值