[超表面论文快讯-203] LPR-级联超表面模块化衍射神经网络-上理工庄松林院士团队

栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
在这里插入图片描述

  • 论文基本信息:

    标题:
    Modular Diffractive Neural Networks Using Cascaded Metasurfaces(级联超表面的模块化衍射神经网络)

    作者:
    Guannan Wang(上海理工大学太赫兹技术创新研究院);
    通讯作者 臧小飞(上海理工大学太赫兹技术创新研究院);
    Zhiyu Tan(上海理工大学太赫兹技术创新研究院);
    Teng Zhang(上海理工大学太赫兹技术创新研究院);
    Zhe Gao(上海理工大学太赫兹技术创新研究院);
    Yuanbo Wang(西安应用光学研究所);
    Deng Zhang(西安应用光学研究所);
    Alexander P. Shkurinov(莫斯科国立大学物理系);
    通讯作者 朱亦鸣(上海理工大学太赫兹技术创新研究院);
    庄松林院士(上海理工大学太赫兹技术创新研究院)

    发表时间:
    2025年6月24日

    发表期刊:
    Laser & Photonics Reviews(JCR-Q1,IF=10)

论文重要图文:

摘要:作为光学与人工智能融合的全光衍射神经网络(DNN),利用基于光的计算架构,凭借其低能耗与高并行处理速度,提供了超越摩尔定律限制的潜力。然而,现有DNN框架在实现空间组装架构(即通过组合两个或多个独立物理层)以创建类似乐高的可重构DNN(能够生成额外功能)方面存在局限。本工作引入模块化编程概念,开发了基于级联超表面的模块化衍射神经网络(MDNNs)——每个超表面实现各自功能,而级联超表面具备额外功能。MDNNs在多任务功能的灵活性与可重构性方面展现出显著优势:当独立工作时,两个基于超表面的模块可分别作为手写字母与时尚产品的分类器;当以不同空间顺序组装这两个模块时,可获得手写数字分类器与成像器的额外功能。此外,MDNNs可被设计为模拟高容量加密通信架构。这种灵活且多路复用的MDNNs框架潜力巨大,为兼具多功能集成、大规模并行处理与全光信息安全的全光计算开辟了新路径。

在这里插入图片描述

图1. 具有处理多任务空间组装能力的模块化DNN示意图。a) 在左旋圆偏振(LCP)太赫兹波入射下,由独立模块(模块A和模块B)组成的子MDNN 1和子MDNN 2分别执行手写字母和时尚产品分类任务;由两个不同组装顺序模块组成的子MDNN 3实现手写数字分类与成像功能。b) 传统层间耦合固定的DNN与类乐高模块化组装能力的模块化DNN对比。
在这里插入图片描述

图2. MDNNs设计原理与实验装置。a,b) 左旋圆偏振太赫兹波入射下,独立模块A与组装模块(模块A+模块B)的工作机制。c) 独立模块B的工作机制。d) 设计方法与加工实验样品(黄色标记指示长度330 μm)。e) 自旋解耦超表面中单元结构示意图,以及x和y偏振太赫兹波照射下的仿真相移(φx, φy)与透射系数(Tx, Ty)。f) 实验装置。
在这里插入图片描述

图3. 0.7 THz左旋圆偏振入射下通过模块化操作实现多任务处理的MDNNs。a) 用于手写字母“a”“b”“c”分类的模块A及其输出电场强度分布、分析能量分布(柱状图)与仿真/实验混淆矩阵。b) 用于时尚产品“裤子”“外套”“运动鞋”分类的模块B及其仿真与实验输出结果。c) 按A到B顺序组装的级联模块(模块A+模块B)用于手写数字“0”“1”“2”分类及其仿真与实验输出结果。
在这里插入图片描述

图4. MDNNs的顺序依赖功能。a) 两种组装顺序下分类与成像联合训练示意图。b) 按B到A顺序组装的级联模块(模块A+模块B)用于成像,输入图像为“0”“1”“2”和“T”“H”“Z”。c) 仿真与实验输出电场强度分布,验证内部泛化(即“0”“1”“2”成像)与外部泛化(即“T”“H”“Z”成像)。
在这里插入图片描述

图5. 基于MDNNs的高容量全光信息加密策略。a–c) 四种明文到密文的加密过程:密钥1对应手写“0”“1”“2”“3”,密钥2对应“a”“b”“c”“d”,密钥3对应“22”“36”“41”“70”,密钥4对应“ab”“cc”“nq”“rt”。d–f) 输出平面计算电场强度分布,通过四种超表面密钥(超表面密钥1至超表面密钥4)将密文解密为明文:字母(“M”“E”“T”“A”)、数字(“2”“0”“2”“5”)、元素符号(“Si”“Ti”“Cu”“Au”)及图像(“猴子”“公牛”“狗”“兔子”)。

论文快览:

解决的问题:
全光衍射神经网络(DNN)凭借高速并行计算潜力推动光学计算发展,但传统DNN功能固定,无法通过空间组装独立物理层生成新功能,限制了多任务处理与可重构性;现有3D打印衍射结构难以实现可调谐与偏振复用,阻碍了DNN在多功能集成场景的应用拓展。

提出的方法:
提出基于级联自旋解耦超表面的模块化衍射神经网络(MDNNs),每个超表面作为独立模块,通过自旋相关元单元独立调控正交圆偏振分量;利用瑞利-索末菲衍射理论建模层间衍射,优化模块相位参数以实现独立任务功能;通过空间组装不同顺序模块(如A-to-B或B-to-A),结合几何相位特性转换偏振态,生成与独立模块解耦的新功能。

实现的效果:
独立模块对字母(EMNIST数据集)、时尚产品(Fashion-MNIST数据集)分类的实验准确率分别达93.3%和100%;组装模块实现数字分类(MNIST数据集)准确率93.3%,并支持成像功能(如识别未训练的“T”“H”“Z”图案);加密场景下,四类型信息(字母、数字、元素符号、动物图像)可加密为不同密文,仅授权用户通过元密钥解密。

创新点分析:
突破传统DNN功能固定的局限,首次将模块化编程引入全光计算,通过级联自旋解耦超表面实现“乐高式”可组装架构;利用自旋偏振通道解耦与空间顺序依赖特性,使组装模块生成独立于原功能的新任务(如分类与成像),同时保持功能间无串扰;拓展了全光计算的多任务并行处理能力,为高容量加密、智能光子系统提供了灵活的模块化设计范式。

  • G. Wang, X. Zang, Z. Tan, T. Zhang, Z. Gao, Y. Wang, D. Zhang, A. P. Shkurinov, Y. Zhu, S. Zhuang, Modular Diffractive Neural Networks Using Cascaded Metasurfaces. Laser Photonics Rev 2025, e00923. https://doi.org/10.1002/lpor.202500923

免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metasurface_Learn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值