筛法加强版

素数筛选算法实现
本文介绍了一种基于素数筛选的算法实现,该算法能够高效地找出指定区间内的所有素数。通过预先计算2到50000之间的素数,并使用这些素数来筛除更大范围内的合数,从而快速确定指定区间内的素数。
#includeint prime[10000];int num;int a,b;bool c[1000000];void output();//判断素数函数 int isp(int n){int i,j;if(n==2){return 1;}for(i=2;i<=n-1;i++){if(n%i==0){return 0;}}return 1;}//输出函数 void output(){int i;for(i=0;i<=b-a;i++){if(c[i]==1){printf("%d\n",i+a);}}}int main(){int i,j;int tmp;num=0;//计算出2到50000的素数 for(i=2;i<=50000;i++){if(isp(i)){prime[num]=i;num=num+1;}}scanf("%d %d",&a,&b);for(i=0;i<=b-a;i++){c[i]=1;}//判断a是不是素数 if(isp(a)){c[0]=1;}else{c[0]=0;}//筛掉合数 for(i=0;i<=num-1;i++){tmp=a/prime[i];tmp=tmp*prime[i]+prime[i];for(j=tmp;j<=b;j=j+prime[i]){c[j-a]=0;}}//输出 output();return 0;}
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值