快速排序

本文介绍了一个使用C++实现的快速排序算法,并展示了如何通过控制台输入一组整数,对其进行排序后输出。该程序利用了递归思想进行分区排序。

#include<stdio.h>
#include<iostream>
using namespace std;

int num[10005];
int n;

void output();
int sort(int left,int right);

int main()
{
 int i,j;
 num[0]=1;
 cin>>n;
 
 for(i=0;i < n ;i ++)
 {
  cin>>num[i];
 }
 
 sort(0,n-1);//排序函数
 
 output();
 
 return 0;
}

int sort(int left,int right)//输入左右边界
{
 int a=left,b=right+1;//为什么right要加一,因为后面是--b
 
 int tmp=0;
 
 if(a >= b)
 {
  
  return 0;
 }
 
 while(1)//每次找到左边比标准大的数和右边比标准小的数,交换
 {
  while(num[++a] < num[left] && a < right)
  {
   ;
  }
  
  while(num[--b] > num[left] && b > left)
  {
   ;
  }
  
  if(a >= b )
  {
   break;
  }
  
  tmp = num[a];
  num[a] = num[b];
  num[b] = tmp;
  
 }

 if(b >= 0)
 {
  tmp = num[left];
  num[left] = num[b];
  num[b] = tmp;
 } 
 
 
 sort(left,b-1);
 sort(b+1,right);
 
 return 0;
}

void output()//输出函数
{
 int i;
 
 for(i=0;i<n;i++)
 {
  printf("%d\n",num[i]);
 }
}

 

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值