VotingClassifier用法

本文详细介绍了Python机器学习库Scikit-Learn中的VotingClassifier,这是一种集成学习策略,通过结合多个分类器的预测来做出最终决定。内容包括VotingClassifier的基本概念、如何配置权重、以及在实际问题中的应用案例,帮助读者理解如何利用不同模型的优点进行投票决策,提高预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述

"""
一、Hard Voting 与 Soft Voting 的对比
1)使用方式
voting = 'hard':表示最终决策方式为 Hard Voting Classifier;
voting = 'soft':表示最终决策方式为 Soft Voting Classifier;
 

2)思想
Hard Voting Classifier:根据少数服从多数来定最终结果;
Soft Voting Classifier:将所有模型预测样本为某一类别的概率的平均值作为标准,概率最高的对应的类型为最终的预测结果;

"""
import numpy as np
from sklearn 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值