大致题意:
有一个国家,有许多城市,一条道路连接两个城市,拆掉这条路的花费为w,国王居住在城市1,因为你拯救了国家,所以国王现在要奖赏你一些城市,可选的城市有f个,每个城市都有一定的价值,当你选择一些城市之后要拆掉一些道路使得国王不能从城市1走到你所选的任一个城市,现在问你,你所能获得的最大价值是多少。
将给出的城市和道路建图,然后添加一个原点,将能选择的f个城市与这个源点相连,权值为所能获得价值。那最终获得的价值就是f个城市之和减去拆掉的路权值之和。那么问题转换成,删掉哪些边,使得城市1,不能到达源点,尽量使得删掉的边权和最小。那这就是最小割问题了。
代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
#define maxn 1050
#define maxn2 200050
#define inf 0x3f3f3f3f
int head[maxn];
int tot;
int cur[maxn];
int dis[maxn];
int vis[maxn];
struct Edge
{
int to;
int f;
int next;
} edge[maxn2];
vector<int>ID;
bool bfs(int s,int t)
{
memset(dis,-1,sizeof(dis));
queue<int>Q;
dis[s]=0;
Q.push(s);
while(!Q.empty())
{
int top=Q.front();
Q.pop();
for(int i=head[top]; i!=-1; i=edge[i].next)
{
if(dis[edge[i].to]==-1&&edge[i].f>0)
{
Q.push(edge[i].to);
dis[edge[i].to]=dis[top]+1;
}
if(dis[t]>0)return true;
}
}
return false;
}
void addedge(int u,int v,int flow)
{
edge[tot].to=v;
edge[tot].f=flow;
edge[tot].next=head[u];
head[u]=tot++;
edge[tot].to=u;
edge[tot].f=0;
edge[tot].next=head[v];
head[v]=tot++;
}
int dfs(int u,int y,int t)
{
if(u==t)return y;
int yy=0;
for(int &i=cur[u]; i!=-1; i=edge[i].next)
{
if(edge[i].f>0&&dis[edge[i].to]==dis[u]+1&&(yy=dfs(edge[i].to,min(y,edge[i].f),t)))
{
edge[i].f-=yy;
edge[i^1].f+=yy;
return yy;
}
}
return 0;
}
void solve(int u)
{
//cout<<u<<endl;
vis[u]=1;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
if(edge[i].f>0&&!vis[edge[i].to])solve(edge[i].to);
}
}
int main()
{
int t,cas=0;
scanf("%d",&t);
while(t--)
{
ID.clear();
int n,m,f,sum=0;
scanf("%d%d%d",&n,&m,&f);
memset(head,-1,sizeof(head));
tot=0;
int a,b,c;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c);
}
for(int i=1; i<=f; i++)
{
scanf("%d%d",&a,&b);
addedge(a,n+1,b);
sum+=b;
}
int s=1,t=n+1;
int ans=0,res=0;
while(bfs(s,t))
{
//cout<<"+++"<<endl;
memcpy(cur,head,sizeof(head));
while(res=dfs(s,inf,t))
{
ans+=res;
}
}
memset(vis,0,sizeof(vis));
solve(1);
for(int i=0; i<tot; i+=2)
{
//cout<<edge[i].to<<" "<<edge[i^1].to<<endl;
if(vis[edge[i^1].to]&&!vis[edge[i].to])
{
if((i/2+1)<=m)
ID.push_back(i/2+1);
}
}
printf("Case %d: %d\n%d",++cas,sum-ans,ID.size());
for(int i=0; i<ID.size(); i++)
{
printf(" %d",ID[i]);
}
printf("\n");
}
}