hdu 3251(最小割+输出割边)

本文介绍了一种使用最小割算法解决特定城市奖励问题的方法。该问题涉及在一个由多个城市组成的国家中,通过切断部分连接城市的道路来最大化获得的城市价值,同时确保国王无法到达被奖励的城市。文章详细解释了如何构建图模型,并通过示例代码展示了实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大致题意:

有一个国家,有许多城市,一条道路连接两个城市,拆掉这条路的花费为w,国王居住在城市1,因为你拯救了国家,所以国王现在要奖赏你一些城市,可选的城市有f个,每个城市都有一定的价值,当你选择一些城市之后要拆掉一些道路使得国王不能从城市1走到你所选的任一个城市,现在问你,你所能获得的最大价值是多少。

将给出的城市和道路建图,然后添加一个原点,将能选择的f个城市与这个源点相连,权值为所能获得价值。那最终获得的价值就是f个城市之和减去拆掉的路权值之和。那么问题转换成,删掉哪些边,使得城市1,不能到达源点,尽量使得删掉的边权和最小。那这就是最小割问题了。

代码:

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
#define maxn 1050
#define maxn2 200050
#define inf 0x3f3f3f3f
int head[maxn];
int tot;
int cur[maxn];
int dis[maxn];
int vis[maxn];
struct Edge
{
    int to;
    int f;
    int next;
} edge[maxn2];
vector<int>ID;
bool bfs(int s,int t)
{
    memset(dis,-1,sizeof(dis));
    queue<int>Q;
    dis[s]=0;
    Q.push(s);
    while(!Q.empty())
    {
        int top=Q.front();
        Q.pop();
        for(int i=head[top]; i!=-1; i=edge[i].next)
        {
            if(dis[edge[i].to]==-1&&edge[i].f>0)
            {
                Q.push(edge[i].to);
                dis[edge[i].to]=dis[top]+1;

            }
            if(dis[t]>0)return true;
        }
    }
    return false;
}
void addedge(int u,int v,int flow)
{
    edge[tot].to=v;
    edge[tot].f=flow;
    edge[tot].next=head[u];
    head[u]=tot++;

    edge[tot].to=u;
    edge[tot].f=0;
    edge[tot].next=head[v];
    head[v]=tot++;
}
int dfs(int u,int y,int t)
{
    if(u==t)return y;
    int yy=0;
    for(int &i=cur[u]; i!=-1; i=edge[i].next)
    {
        if(edge[i].f>0&&dis[edge[i].to]==dis[u]+1&&(yy=dfs(edge[i].to,min(y,edge[i].f),t)))
        {
            edge[i].f-=yy;
            edge[i^1].f+=yy;
            return yy;
        }
    }
    return 0;
}
void solve(int u)
{
    //cout<<u<<endl;
    vis[u]=1;
    for(int i=head[u]; i!=-1; i=edge[i].next)
    {
        if(edge[i].f>0&&!vis[edge[i].to])solve(edge[i].to);
    }

}
int main()
{
    int t,cas=0;
    scanf("%d",&t);
    while(t--)
    {
        ID.clear();
        int n,m,f,sum=0;
        scanf("%d%d%d",&n,&m,&f);
        memset(head,-1,sizeof(head));
        tot=0;
        int a,b,c;
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            addedge(a,b,c);
        }
        for(int i=1; i<=f; i++)
        {
            scanf("%d%d",&a,&b);
            addedge(a,n+1,b);
            sum+=b;
        }
        int s=1,t=n+1;
        int ans=0,res=0;
        while(bfs(s,t))
        {
            //cout<<"+++"<<endl;
            memcpy(cur,head,sizeof(head));
            while(res=dfs(s,inf,t))
            {
                ans+=res;
            }
        }
        memset(vis,0,sizeof(vis));
        solve(1);
        for(int i=0; i<tot; i+=2)
        {
            //cout<<edge[i].to<<" "<<edge[i^1].to<<endl;
            if(vis[edge[i^1].to]&&!vis[edge[i].to])
            {
                if((i/2+1)<=m)
                ID.push_back(i/2+1);
            }
        }
        printf("Case %d: %d\n%d",++cas,sum-ans,ID.size());
        for(int i=0; i<ID.size(); i++)
        {
            printf(" %d",ID[i]);
        }
        printf("\n");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值