内容来自《机器学习实战》和大神博客,详情请点下方
1. KNN算法
1.1 工作原理
简单地说, k近邻法(k-nearest neighbor, k-NN) 采用测量不同特征值之间的距离的方法进行分类。
工作原理:
- 存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。
- 输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。
- 一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。
- 最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
1.2 KNN算法的一般流程
1.3 KNN的优缺点
优点
- 简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归(如下如);
- 可用于数值型数据和离散型数据;
- 训练时间复杂度为O(n);无数据输入假定(对数据没有假设);
- 对异常值不敏感
缺点
- 计算复杂性高(每次判断测试样本的类别时,需要计算测试样本与所有样本的距离);空间复杂性高;
- 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
- 一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少,否则容易发生误分。
- 最大的缺点是无法给出数据的内在含义。