(一)kNN 基础理论

内容来自《机器学习实战》和大神博客,详情请点下方

1. KNN算法

1.1 工作原理

简单地说, k近邻法(k-nearest neighbor, k-NN) 采用测量不同特征值之间的距离的方法进行分类。

工作原理:

  • 存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。
  • 输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。
  • 一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。
  • 最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

1.2 KNN算法的一般流程

在这里插入图片描述

1.3 KNN的优缺点

在这里插入图片描述
优点

  • 简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归(如下如);
  • 可用于数值型数据和离散型数据;
  • 训练时间复杂度为O(n);无数据输入假定(对数据没有假设);
  • 对异常值不敏感

在这里插入图片描述

缺点

  • 计算复杂性高(每次判断测试样本的类别时,需要计算测试样本与所有样本的距离);空间复杂性高;
  • 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
  • 一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少,否则容易发生误分。
  • 最大的缺点是无法给出数据的内在含义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值